This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset is reflexive. (Contributed by NM, 13-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psref.1 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | psref | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑅 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psref.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | psdmrn | ⊢ ( 𝑅 ∈ PosetRel → ( dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅 ) ) | |
| 3 | 2 | simpld | ⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅 ) |
| 4 | 1 3 | eqtrid | ⊢ ( 𝑅 ∈ PosetRel → 𝑋 = ∪ ∪ 𝑅 ) |
| 5 | 4 | eleq2d | ⊢ ( 𝑅 ∈ PosetRel → ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ ∪ 𝑅 ) ) |
| 6 | pslem | ⊢ ( 𝑅 ∈ PosetRel → ( ( ( 𝐴 𝑅 𝐴 ∧ 𝐴 𝑅 𝐴 ) → 𝐴 𝑅 𝐴 ) ∧ ( 𝐴 ∈ ∪ ∪ 𝑅 → 𝐴 𝑅 𝐴 ) ∧ ( ( 𝐴 𝑅 𝐴 ∧ 𝐴 𝑅 𝐴 ) → 𝐴 = 𝐴 ) ) ) | |
| 7 | 6 | simp2d | ⊢ ( 𝑅 ∈ PosetRel → ( 𝐴 ∈ ∪ ∪ 𝑅 → 𝐴 𝑅 𝐴 ) ) |
| 8 | 5 7 | sylbid | ⊢ ( 𝑅 ∈ PosetRel → ( 𝐴 ∈ 𝑋 → 𝐴 𝑅 𝐴 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑅 𝐴 ) |