This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class union of the intersection of two classes. Exercise 4.12(n) of Mendelson p. 235. See uniinqs for a condition where equality holds. (Contributed by NM, 4-Dec-2003) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniin | ⊢ ∪ ( 𝐴 ∩ 𝐵 ) ⊆ ( ∪ 𝐴 ∩ ∪ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 | ⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 2 | elin | ⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 4 | anandi | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 7 | eluni | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 8 | eluni | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 9 | 7 8 | anbi12i | ⊢ ( ( 𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 10 | 1 6 9 | 3imtr4i | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵 ) ) |
| 11 | eluni | ⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 12 | elin | ⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ ∪ 𝐵 ) ↔ ( 𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵 ) ) | |
| 13 | 10 11 12 | 3imtr4i | ⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ ∪ 𝐵 ) ) |
| 14 | 13 | ssriv | ⊢ ∪ ( 𝐴 ∩ 𝐵 ) ⊆ ( ∪ 𝐴 ∩ ∪ 𝐵 ) |