This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that B ( x ) and D ( x ) are both possibly dependent on x .) (Contributed by Mario Carneiro, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixpfi2.1 | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | |
| ixpfi2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| ixpfi2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → 𝐵 ⊆ { 𝐷 } ) | ||
| Assertion | ixpfi2 | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpfi2.1 | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | |
| 2 | ixpfi2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 3 | ixpfi2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → 𝐵 ⊆ { 𝐷 } ) | |
| 4 | inss2 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 | |
| 5 | ssfi | ⊢ ( ( 𝐶 ∈ Fin ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 ) → ( 𝐴 ∩ 𝐶 ) ∈ Fin ) | |
| 6 | 1 4 5 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) ∈ Fin ) |
| 7 | inss1 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 | |
| 8 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| 9 | ssralv | ⊢ ( ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ Fin ) ) | |
| 10 | 7 8 9 | mpsyl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ Fin ) |
| 11 | ixpfi | ⊢ ( ( ( 𝐴 ∩ 𝐶 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ Fin ) → X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ Fin ) | |
| 12 | 6 10 11 | syl2anc | ⊢ ( 𝜑 → X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ Fin ) |
| 13 | resixp | ⊢ ( ( ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ∈ X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ) | |
| 14 | 7 13 | mpan | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ∈ X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ) |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ∈ X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) | |
| 17 | vex | ⊢ 𝑓 ∈ V | |
| 18 | 17 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 19 | 16 18 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 20 | 19 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) | |
| 22 | vex | ⊢ 𝑔 ∈ V | |
| 23 | 22 | elixp | ⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 24 | 21 23 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑔 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 25 | 24 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 26 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 27 | difss | ⊢ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐴 | |
| 28 | ssralv | ⊢ ( ( 𝐴 ∖ 𝐶 ) ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 30 | 3 | sseld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ { 𝐷 } ) ) |
| 31 | elsni | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ { 𝐷 } → ( 𝑓 ‘ 𝑥 ) = 𝐷 ) | |
| 32 | 30 31 | syl6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) = 𝐷 ) ) |
| 33 | 3 | sseld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑔 ‘ 𝑥 ) ∈ { 𝐷 } ) ) |
| 34 | elsni | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ { 𝐷 } → ( 𝑔 ‘ 𝑥 ) = 𝐷 ) | |
| 35 | 33 34 | syl6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑔 ‘ 𝑥 ) = 𝐷 ) ) |
| 36 | 32 35 | anim12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑥 ) = 𝐷 ∧ ( 𝑔 ‘ 𝑥 ) = 𝐷 ) ) ) |
| 37 | eqtr3 | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) = 𝐷 ∧ ( 𝑔 ‘ 𝑥 ) = 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 38 | 36 37 | syl6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ) → ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 39 | 38 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 41 | 29 40 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 42 | 26 41 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 43 | 20 25 42 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 44 | 43 | biantrud | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 45 | fvres | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) → ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 46 | fvres | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) → ( ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 47 | 45 46 | eqeq12d | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) → ( ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) = ( ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 48 | 47 | ralbiia | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) = ( ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 49 | inundif | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐴 ∖ 𝐶 ) ) = 𝐴 | |
| 50 | 49 | raleqi | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐴 ∖ 𝐶 ) ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 51 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐴 ∖ 𝐶 ) ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) | |
| 52 | 50 51 | bitr3i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐶 ) ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 53 | 44 48 52 | 3bitr4g | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) = ( ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 54 | 19 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑓 Fn 𝐴 ) |
| 55 | fnssres | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ) → ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) Fn ( 𝐴 ∩ 𝐶 ) ) | |
| 56 | 54 7 55 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) Fn ( 𝐴 ∩ 𝐶 ) ) |
| 57 | 24 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑔 Fn 𝐴 ) |
| 58 | fnssres | ⊢ ( ( 𝑔 Fn 𝐴 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ) → ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) Fn ( 𝐴 ∩ 𝐶 ) ) | |
| 59 | 57 7 58 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) Fn ( 𝐴 ∩ 𝐶 ) ) |
| 60 | eqfnfv | ⊢ ( ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) Fn ( 𝐴 ∩ 𝐶 ) ∧ ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) Fn ( 𝐴 ∩ 𝐶 ) ) → ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) = ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) = ( ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) ) ) | |
| 61 | 56 59 60 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) = ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) = ( ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ‘ 𝑥 ) ) ) |
| 62 | eqfnfv | ⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝑔 Fn 𝐴 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) | |
| 63 | 54 57 62 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 64 | 53 61 63 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) = ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ↔ 𝑓 = 𝑔 ) ) |
| 65 | 64 | ex | ⊢ ( 𝜑 → ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) = ( 𝑔 ↾ ( 𝐴 ∩ 𝐶 ) ) ↔ 𝑓 = 𝑔 ) ) ) |
| 66 | 15 65 | dom2lem | ⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↦ ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ) : X 𝑥 ∈ 𝐴 𝐵 –1-1→ X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ) |
| 67 | f1fi | ⊢ ( ( X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ Fin ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↦ ( 𝑓 ↾ ( 𝐴 ∩ 𝐶 ) ) ) : X 𝑥 ∈ 𝐴 𝐵 –1-1→ X 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) | |
| 68 | 12 66 67 | syl2anc | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |