This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is zero outside its support. Version of suppssr avoiding ax-rep by assuming F is a set rather than its domain A . (Contributed by SN, 5-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssrg.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| suppssrg.n | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) | ||
| suppssrg.a | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| suppssrg.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| Assertion | suppssrg | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssrg.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | suppssrg.n | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) | |
| 3 | suppssrg.a | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | suppssrg.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 5 | eldif | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊 ) ) | |
| 6 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 7 | elsuppfng | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) | |
| 8 | 6 3 4 7 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
| 9 | 2 | sseld | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) → 𝑋 ∈ 𝑊 ) ) |
| 10 | 8 9 | sylbird | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) → 𝑋 ∈ 𝑊 ) ) |
| 11 | 10 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 → 𝑋 ∈ 𝑊 ) ) |
| 12 | 11 | necon1bd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ 𝑋 ∈ 𝑊 → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) ) |
| 13 | 12 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
| 14 | 5 13 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |