This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a relation applied to two functions. Originally part of ofrfval , this version assumes the functions are sets rather than their domains, avoiding ax-rep . (Contributed by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofrfvalg.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| ofrfvalg.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | ||
| ofrfvalg.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| ofrfvalg.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| ofrfvalg.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 | ||
| ofrfvalg.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) | ||
| ofrfvalg.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) | ||
| Assertion | ofrfvalg | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ 𝑆 𝐶 𝑅 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofrfvalg.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | ofrfvalg.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | |
| 3 | ofrfvalg.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | ofrfvalg.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 5 | ofrfvalg.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 | |
| 6 | ofrfvalg.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) | |
| 7 | ofrfvalg.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) | |
| 8 | dmeq | ⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) | |
| 9 | dmeq | ⊢ ( 𝑔 = 𝐺 → dom 𝑔 = dom 𝐺 ) | |
| 10 | 8 9 | ineqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( dom 𝑓 ∩ dom 𝑔 ) = ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 11 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 12 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 13 | 11 12 | breqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 14 | 10 13 | raleqbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 15 | df-ofr | ⊢ ∘r 𝑅 = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } | |
| 16 | 14 15 | brabga | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 | 3 4 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 18 | 1 | fndmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 19 | 2 | fndmd | ⊢ ( 𝜑 → dom 𝐺 = 𝐵 ) |
| 20 | 18 19 | ineq12d | ⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = ( 𝐴 ∩ 𝐵 ) ) |
| 21 | 20 5 | eqtrdi | ⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = 𝑆 ) |
| 22 | 21 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 24 | 5 23 | eqsstrri | ⊢ 𝑆 ⊆ 𝐴 |
| 25 | 24 | sseli | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴 ) |
| 26 | 25 6 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 27 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 28 | 5 27 | eqsstrri | ⊢ 𝑆 ⊆ 𝐵 |
| 29 | 28 | sseli | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐵 ) |
| 30 | 29 7 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) |
| 31 | 26 30 | breq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ↔ 𝐶 𝑅 𝐷 ) ) |
| 32 | 31 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 𝐶 𝑅 𝐷 ) ) |
| 33 | 17 22 32 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ 𝑆 𝐶 𝑅 𝐷 ) ) |