This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppofssd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| suppofssd.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| suppofssd.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| suppofssd.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | ||
| suppofssd.5 | ⊢ ( 𝜑 → ( 𝑍 𝑋 𝑍 ) = 𝑍 ) | ||
| Assertion | suppofssd | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑋 𝐺 ) supp 𝑍 ) ⊆ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppofssd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | suppofssd.2 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 3 | suppofssd.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 4 | suppofssd.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 5 | suppofssd.5 | ⊢ ( 𝜑 → ( 𝑍 𝑋 𝑍 ) = 𝑍 ) | |
| 6 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝑋 𝑦 ) ∈ V ) | |
| 7 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 8 | 6 3 4 1 1 7 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑋 𝐺 ) : 𝐴 ⟶ V ) |
| 9 | eldif | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ) | |
| 10 | ioran | ⊢ ( ¬ ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∨ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ↔ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) | |
| 11 | elun | ⊢ ( 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ↔ ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∨ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) | |
| 12 | 10 11 | xchnxbir | ⊢ ( ¬ 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ↔ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) |
| 13 | 12 | anbi2i | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) |
| 14 | 9 13 | bitri | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) |
| 15 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 16 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) | |
| 17 | 15 1 2 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 18 | 17 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 19 | 18 | biimpd | ⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) → ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 20 | 4 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 21 | elsuppfn | ⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑘 ∈ ( 𝐺 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) | |
| 22 | 20 1 2 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐺 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 23 | 22 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 24 | 23 | biimpd | ⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) → ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 25 | 19 24 | anim12d | ⊢ ( 𝜑 → ( ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) → ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) |
| 26 | 25 | anim2d | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) → ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) → ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) |
| 28 | pm3.2 | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 → ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) | |
| 29 | 28 | necon1bd | ⊢ ( 𝑘 ∈ 𝐴 → ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) ) |
| 30 | pm3.2 | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 → ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) | |
| 31 | 30 | necon1bd | ⊢ ( 𝑘 ∈ 𝐴 → ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) |
| 32 | 29 31 | anim12d | ⊢ ( 𝑘 ∈ 𝐴 → ( ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) |
| 33 | 32 | imdistani | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) → ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) |
| 34 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝐹 Fn 𝐴 ) |
| 35 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝐺 Fn 𝐴 ) |
| 36 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 37 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → 𝑘 ∈ 𝐴 ) | |
| 38 | fnfvof | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) ) | |
| 39 | 34 35 36 37 38 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) ) |
| 40 | oveq12 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) = ( 𝑍 𝑋 𝑍 ) ) | |
| 41 | 40 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑋 ( 𝐺 ‘ 𝑘 ) ) = ( 𝑍 𝑋 𝑍 ) ) |
| 42 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( 𝑍 𝑋 𝑍 ) = 𝑍 ) |
| 43 | 39 41 42 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑘 ) = 𝑍 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑍 ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 44 | 33 43 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ∧ ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑍 ) ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 45 | 27 44 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ( ¬ 𝑘 ∈ ( 𝐹 supp 𝑍 ) ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑍 ) ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 46 | 14 45 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) ) → ( ( 𝐹 ∘f 𝑋 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 47 | 8 46 | suppss | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑋 𝐺 ) supp 𝑍 ) ⊆ ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ) |