This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgneu | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 1 3 4 | psgneldm | ⊢ ( 𝑃 ∈ dom 𝑁 ↔ ( 𝑃 ∈ ( Base ‘ 𝐺 ) ∧ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝑃 ∈ dom 𝑁 → 𝑃 ∈ ( Base ‘ 𝐺 ) ) |
| 7 | 1 4 | elbasfv | ⊢ ( 𝑃 ∈ ( Base ‘ 𝐺 ) → 𝐷 ∈ V ) |
| 8 | 6 7 | syl | ⊢ ( 𝑃 ∈ dom 𝑁 → 𝐷 ∈ V ) |
| 9 | 1 2 3 | psgneldm2 | ⊢ ( 𝐷 ∈ V → ( 𝑃 ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) ) |
| 10 | 8 9 | syl | ⊢ ( 𝑃 ∈ dom 𝑁 → ( 𝑃 ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) ) |
| 11 | 10 | ibi | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) |
| 12 | simpr | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) ∧ 𝑃 = ( 𝐺 Σg 𝑤 ) ) → 𝑃 = ( 𝐺 Σg 𝑤 ) ) | |
| 13 | eqid | ⊢ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) | |
| 14 | ovex | ⊢ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ V | |
| 15 | eqeq1 | ⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 17 | 14 16 | spcev | ⊢ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 18 | 12 13 17 | sylancl | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) ∧ 𝑃 = ( 𝐺 Σg 𝑤 ) ) → ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝑃 ∈ dom 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ( 𝑃 = ( 𝐺 Σg 𝑤 ) → ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 20 | 19 | reximdva | ⊢ ( 𝑃 ∈ dom 𝑁 → ( ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) → ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 21 | 11 20 | mpd | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 22 | rexcom4 | ⊢ ( ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑠 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | |
| 23 | 21 22 | sylib | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 24 | reeanv | ⊢ ( ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑥 ∈ Word 𝑇 ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) | |
| 25 | 8 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝐷 ∈ V ) |
| 26 | simplrl | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑤 ∈ Word 𝑇 ) | |
| 27 | simplrr | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑥 ∈ Word 𝑇 ) | |
| 28 | simprll | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑃 = ( 𝐺 Σg 𝑤 ) ) | |
| 29 | simprrl | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑃 = ( 𝐺 Σg 𝑥 ) ) | |
| 30 | 28 29 | eqtr3d | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑥 ) ) |
| 31 | 1 2 25 26 27 30 | psgnuni | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 32 | simprlr | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) | |
| 33 | simprrr | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) | |
| 34 | 31 32 33 | 3eqtr4d | ⊢ ( ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) ∧ ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) → 𝑠 = 𝑡 ) |
| 35 | 34 | ex | ⊢ ( ( 𝑃 ∈ dom 𝑁 ∧ ( 𝑤 ∈ Word 𝑇 ∧ 𝑥 ∈ Word 𝑇 ) ) → ( ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
| 36 | 35 | rexlimdvva | ⊢ ( 𝑃 ∈ dom 𝑁 → ( ∃ 𝑤 ∈ Word 𝑇 ∃ 𝑥 ∈ Word 𝑇 ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
| 37 | 24 36 | biimtrrid | ⊢ ( 𝑃 ∈ dom 𝑁 → ( ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
| 38 | 37 | alrimivv | ⊢ ( 𝑃 ∈ dom 𝑁 → ∀ 𝑠 ∀ 𝑡 ( ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) |
| 39 | eqeq1 | ⊢ ( 𝑠 = 𝑡 → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | |
| 40 | 39 | anbi2d | ⊢ ( 𝑠 = 𝑡 → ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 41 | 40 | rexbidv | ⊢ ( 𝑠 = 𝑡 → ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 42 | oveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑥 ) ) | |
| 43 | 42 | eqeq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑃 = ( 𝐺 Σg 𝑤 ) ↔ 𝑃 = ( 𝐺 Σg 𝑥 ) ) ) |
| 44 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑥 ) ) | |
| 45 | 44 | oveq2d | ⊢ ( 𝑤 = 𝑥 → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 46 | 45 | eqeq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) |
| 47 | 43 46 | anbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) |
| 48 | 47 | cbvrexvw | ⊢ ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) |
| 49 | 41 48 | bitrdi | ⊢ ( 𝑠 = 𝑡 → ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) ) |
| 50 | 49 | eu4 | ⊢ ( ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∀ 𝑠 ∀ 𝑡 ( ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ∧ ∃ 𝑥 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑥 ) ∧ 𝑡 = ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) ) → 𝑠 = 𝑡 ) ) ) |
| 51 | 23 38 50 | sylanbrc | ⊢ ( 𝑃 ∈ dom 𝑁 → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |