This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | |- G = ( SymGrp ` D ) |
|
| psgnval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgneu | |- ( P e. dom N -> E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnval.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnval.n | |- N = ( pmSgn ` D ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 1 3 4 | psgneldm | |- ( P e. dom N <-> ( P e. ( Base ` G ) /\ dom ( P \ _I ) e. Fin ) ) |
| 6 | 5 | simplbi | |- ( P e. dom N -> P e. ( Base ` G ) ) |
| 7 | 1 4 | elbasfv | |- ( P e. ( Base ` G ) -> D e. _V ) |
| 8 | 6 7 | syl | |- ( P e. dom N -> D e. _V ) |
| 9 | 1 2 3 | psgneldm2 | |- ( D e. _V -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) |
| 10 | 8 9 | syl | |- ( P e. dom N -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) |
| 11 | 10 | ibi | |- ( P e. dom N -> E. w e. Word T P = ( G gsum w ) ) |
| 12 | simpr | |- ( ( ( P e. dom N /\ w e. Word T ) /\ P = ( G gsum w ) ) -> P = ( G gsum w ) ) |
|
| 13 | eqid | |- ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) |
|
| 14 | ovex | |- ( -u 1 ^ ( # ` w ) ) e. _V |
|
| 15 | eqeq1 | |- ( s = ( -u 1 ^ ( # ` w ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
|
| 16 | 15 | anbi2d | |- ( s = ( -u 1 ^ ( # ` w ) ) -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 17 | 14 16 | spcev | |- ( ( P = ( G gsum w ) /\ ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 18 | 12 13 17 | sylancl | |- ( ( ( P e. dom N /\ w e. Word T ) /\ P = ( G gsum w ) ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 19 | 18 | ex | |- ( ( P e. dom N /\ w e. Word T ) -> ( P = ( G gsum w ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 20 | 19 | reximdva | |- ( P e. dom N -> ( E. w e. Word T P = ( G gsum w ) -> E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 21 | 11 20 | mpd | |- ( P e. dom N -> E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 22 | rexcom4 | |- ( E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
|
| 23 | 21 22 | sylib | |- ( P e. dom N -> E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 24 | reeanv | |- ( E. w e. Word T E. x e. Word T ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) <-> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) |
|
| 25 | 8 | ad2antrr | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> D e. _V ) |
| 26 | simplrl | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> w e. Word T ) |
|
| 27 | simplrr | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> x e. Word T ) |
|
| 28 | simprll | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> P = ( G gsum w ) ) |
|
| 29 | simprrl | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> P = ( G gsum x ) ) |
|
| 30 | 28 29 | eqtr3d | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> ( G gsum w ) = ( G gsum x ) ) |
| 31 | 1 2 25 26 27 30 | psgnuni | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) |
| 32 | simprlr | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> s = ( -u 1 ^ ( # ` w ) ) ) |
|
| 33 | simprrr | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> t = ( -u 1 ^ ( # ` x ) ) ) |
|
| 34 | 31 32 33 | 3eqtr4d | |- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> s = t ) |
| 35 | 34 | ex | |- ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) -> ( ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
| 36 | 35 | rexlimdvva | |- ( P e. dom N -> ( E. w e. Word T E. x e. Word T ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
| 37 | 24 36 | biimtrrid | |- ( P e. dom N -> ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
| 38 | 37 | alrimivv | |- ( P e. dom N -> A. s A. t ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
| 39 | eqeq1 | |- ( s = t -> ( s = ( -u 1 ^ ( # ` w ) ) <-> t = ( -u 1 ^ ( # ` w ) ) ) ) |
|
| 40 | 39 | anbi2d | |- ( s = t -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 41 | 40 | rexbidv | |- ( s = t -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 42 | oveq2 | |- ( w = x -> ( G gsum w ) = ( G gsum x ) ) |
|
| 43 | 42 | eqeq2d | |- ( w = x -> ( P = ( G gsum w ) <-> P = ( G gsum x ) ) ) |
| 44 | fveq2 | |- ( w = x -> ( # ` w ) = ( # ` x ) ) |
|
| 45 | 44 | oveq2d | |- ( w = x -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) |
| 46 | 45 | eqeq2d | |- ( w = x -> ( t = ( -u 1 ^ ( # ` w ) ) <-> t = ( -u 1 ^ ( # ` x ) ) ) ) |
| 47 | 43 46 | anbi12d | |- ( w = x -> ( ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) |
| 48 | 47 | cbvrexvw | |- ( E. w e. Word T ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) <-> E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) |
| 49 | 41 48 | bitrdi | |- ( s = t -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) |
| 50 | 49 | eu4 | |- ( E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ A. s A. t ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) ) |
| 51 | 23 38 50 | sylanbrc | |- ( P e. dom N -> E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |