This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnval | ⊢ ( 𝑃 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑃 ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | eqeq1 | ⊢ ( 𝑡 = 𝑃 → ( 𝑡 = ( 𝐺 Σg 𝑤 ) ↔ 𝑃 = ( 𝐺 Σg 𝑤 ) ) ) | |
| 5 | 4 | anbi1d | ⊢ ( 𝑡 = 𝑃 → ( ( 𝑡 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑡 = 𝑃 → ( ∃ 𝑤 ∈ Word 𝑇 ( 𝑡 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 7 | 6 | iotabidv | ⊢ ( 𝑡 = 𝑃 → ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑡 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 9 | eqid | ⊢ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } | |
| 10 | 1 8 9 3 | psgnfn | ⊢ 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
| 11 | 10 | fndmi | ⊢ dom 𝑁 = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
| 12 | 1 8 11 2 3 | psgnfval | ⊢ 𝑁 = ( 𝑡 ∈ dom 𝑁 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑡 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 13 | iotaex | ⊢ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∈ V | |
| 14 | 7 12 13 | fvmpt | ⊢ ( 𝑃 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑃 ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |