This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgneldm.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgneldm.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| psgneldm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | psgneldm | ⊢ ( 𝑃 ∈ dom 𝑁 ↔ ( 𝑃 ∈ 𝐵 ∧ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgneldm.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgneldm.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 3 | psgneldm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | difeq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∖ I ) = ( 𝑃 ∖ I ) ) | |
| 5 | 4 | dmeqd | ⊢ ( 𝑝 = 𝑃 → dom ( 𝑝 ∖ I ) = dom ( 𝑃 ∖ I ) ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑝 = 𝑃 → ( dom ( 𝑝 ∖ I ) ∈ Fin ↔ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |
| 7 | eqid | ⊢ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } | |
| 8 | 1 3 7 2 | psgnfn | ⊢ 𝑁 Fn { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 9 | 8 | fndmi | ⊢ dom 𝑁 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 10 | 6 9 | elrab2 | ⊢ ( 𝑃 ∈ dom 𝑁 ↔ ( 𝑃 ∈ 𝐵 ∧ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |