This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgneldm2 | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | eqid | ⊢ { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } | |
| 6 | 1 4 5 3 | psgnfn | ⊢ 𝑁 Fn { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 7 | 6 | fndmi | ⊢ dom 𝑁 = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 8 | eqid | ⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | |
| 9 | 2 1 4 8 | symggen | ⊢ ( 𝐷 ∈ 𝑉 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 ) = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
| 10 | 1 | symggrp | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 11 | 10 | grpmndd | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
| 12 | 2 1 4 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 13 | 4 8 | gsumwspan | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 ) = ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) |
| 14 | 11 12 13 | sylancl | ⊢ ( 𝐷 ∈ 𝑉 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 ) = ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) |
| 15 | 9 14 | eqtr3d | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) |
| 16 | 7 15 | eqtrid | ⊢ ( 𝐷 ∈ 𝑉 → dom 𝑁 = ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ dom 𝑁 ↔ 𝑃 ∈ ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ) ) |
| 18 | eqid | ⊢ ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) = ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) | |
| 19 | ovex | ⊢ ( 𝐺 Σg 𝑤 ) ∈ V | |
| 20 | 18 19 | elrnmpti | ⊢ ( 𝑃 ∈ ran ( 𝑤 ∈ Word 𝑇 ↦ ( 𝐺 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) |
| 21 | 17 20 | bitrdi | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 𝑃 = ( 𝐺 Σg 𝑤 ) ) ) |