This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnblcld.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| Assertion | cnbl0 | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnblcld.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| 2 | df-3an | ⊢ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) | |
| 3 | abscl | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) | |
| 4 | absge0 | ⊢ ( 𝑥 ∈ ℂ → 0 ≤ ( abs ‘ 𝑥 ) ) | |
| 5 | 3 4 | jca | ⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
| 7 | 6 | biantrurd | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) < 𝑅 ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) ) |
| 8 | 2 7 | bitr4id | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ↔ ( abs ‘ 𝑥 ) < 𝑅 ) ) |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | simpl | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → 𝑅 ∈ ℝ* ) | |
| 11 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) ) |
| 13 | 0cn | ⊢ 0 ∈ ℂ | |
| 14 | 1 | cnmetdval | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) ) |
| 15 | abssub | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑥 ) ) = ( abs ‘ ( 𝑥 − 0 ) ) ) | |
| 16 | 14 15 | eqtrd | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 17 | 13 16 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 18 | subid1 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) | |
| 19 | 18 | fveq2d | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) ) |
| 20 | 17 19 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 22 | 21 | breq1d | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( 0 𝐷 𝑥 ) < 𝑅 ↔ ( abs ‘ 𝑥 ) < 𝑅 ) ) |
| 23 | 8 12 22 | 3bitr4d | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( 0 𝐷 𝑥 ) < 𝑅 ) ) |
| 24 | 23 | pm5.32da | ⊢ ( 𝑅 ∈ ℝ* → ( ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 25 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 26 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 27 | 25 26 | ax-mp | ⊢ abs Fn ℂ |
| 28 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
| 29 | 27 28 | mp1i | ⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
| 30 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 31 | 1 30 | eqeltri | ⊢ 𝐷 ∈ ( ∞Met ‘ ℂ ) |
| 32 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ∈ ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) < 𝑅 ) ) ) | |
| 33 | 31 13 32 | mp3an12 | ⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 34 | 24 29 33 | 3bitr4d | ⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ 𝑥 ∈ ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| 35 | 34 | eqrdv | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ) |