This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prm23lt5 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 2 | 1 | nnnn0d | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
| 3 | 2 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ∈ ℕ0 ) |
| 4 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 5 | 4 | a1i | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 4 ∈ ℕ0 ) |
| 6 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 7 | 6 | breq2i | ⊢ ( 𝑃 < 5 ↔ 𝑃 < ( 4 + 1 ) ) |
| 8 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 9 | 4z | ⊢ 4 ∈ ℤ | |
| 10 | zleltp1 | ⊢ ( ( 𝑃 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 𝑃 ≤ 4 ↔ 𝑃 < ( 4 + 1 ) ) ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ≤ 4 ↔ 𝑃 < ( 4 + 1 ) ) ) |
| 12 | 11 | biimprd | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < ( 4 + 1 ) → 𝑃 ≤ 4 ) ) |
| 13 | 7 12 | biimtrid | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 → 𝑃 ≤ 4 ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ≤ 4 ) |
| 15 | elfz2nn0 | ⊢ ( 𝑃 ∈ ( 0 ... 4 ) ↔ ( 𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 𝑃 ≤ 4 ) ) | |
| 16 | 3 5 14 15 | syl3anbrc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ∈ ( 0 ... 4 ) ) |
| 17 | fz0to4untppr | ⊢ ( 0 ... 4 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) | |
| 18 | 17 | eleq2i | ⊢ ( 𝑃 ∈ ( 0 ... 4 ) ↔ 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ) |
| 19 | elun | ⊢ ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ↔ ( 𝑃 ∈ { 0 , 1 , 2 } ∨ 𝑃 ∈ { 3 , 4 } ) ) | |
| 20 | eltpi | ⊢ ( 𝑃 ∈ { 0 , 1 , 2 } → ( 𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2 ) ) | |
| 21 | nnne0 | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ≠ 0 ) | |
| 22 | eqneqall | ⊢ ( 𝑃 = 0 → ( 𝑃 ≠ 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) | |
| 23 | 22 | com12 | ⊢ ( 𝑃 ≠ 0 → ( 𝑃 = 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 24 | 1 21 23 | 3syl | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 25 | 24 | com12 | ⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 26 | eleq1 | ⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ ↔ 1 ∈ ℙ ) ) | |
| 27 | 1nprm | ⊢ ¬ 1 ∈ ℙ | |
| 28 | 27 | pm2.21i | ⊢ ( 1 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| 29 | 26 28 | biimtrdi | ⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 30 | orc | ⊢ ( 𝑃 = 2 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) | |
| 31 | 30 | a1d | ⊢ ( 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 32 | 25 29 31 | 3jaoi | ⊢ ( ( 𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 33 | 20 32 | syl | ⊢ ( 𝑃 ∈ { 0 , 1 , 2 } → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 34 | elpri | ⊢ ( 𝑃 ∈ { 3 , 4 } → ( 𝑃 = 3 ∨ 𝑃 = 4 ) ) | |
| 35 | olc | ⊢ ( 𝑃 = 3 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) | |
| 36 | 35 | a1d | ⊢ ( 𝑃 = 3 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 37 | eleq1 | ⊢ ( 𝑃 = 4 → ( 𝑃 ∈ ℙ ↔ 4 ∈ ℙ ) ) | |
| 38 | 4nprm | ⊢ ¬ 4 ∈ ℙ | |
| 39 | 38 | pm2.21i | ⊢ ( 4 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| 40 | 37 39 | biimtrdi | ⊢ ( 𝑃 = 4 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 41 | 36 40 | jaoi | ⊢ ( ( 𝑃 = 3 ∨ 𝑃 = 4 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 42 | 34 41 | syl | ⊢ ( 𝑃 ∈ { 3 , 4 } → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 43 | 33 42 | jaoi | ⊢ ( ( 𝑃 ∈ { 0 , 1 , 2 } ∨ 𝑃 ∈ { 3 , 4 } ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 44 | 19 43 | sylbi | ⊢ ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 45 | 44 | com12 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 47 | 18 46 | biimtrid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 ∈ ( 0 ... 4 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 48 | 16 47 | mpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |