This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017) (Proof shortened by AV, 7-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz0to4untppr | ⊢ ( 0 ... 4 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 2 | 0z | ⊢ 0 ∈ ℤ | |
| 3 | 3z | ⊢ 3 ∈ ℤ | |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | 3re | ⊢ 3 ∈ ℝ | |
| 6 | 3pos | ⊢ 0 < 3 | |
| 7 | 4 5 6 | ltleii | ⊢ 0 ≤ 3 |
| 8 | eluz2 | ⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3 ) ) | |
| 9 | 2 3 7 8 | mpbir3an | ⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
| 10 | 1 9 | eqeltri | ⊢ ( 2 + 1 ) ∈ ( ℤ≥ ‘ 0 ) |
| 11 | 2z | ⊢ 2 ∈ ℤ | |
| 12 | 4z | ⊢ 4 ∈ ℤ | |
| 13 | 2re | ⊢ 2 ∈ ℝ | |
| 14 | 4re | ⊢ 4 ∈ ℝ | |
| 15 | 2lt4 | ⊢ 2 < 4 | |
| 16 | 13 14 15 | ltleii | ⊢ 2 ≤ 4 |
| 17 | eluz2 | ⊢ ( 4 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4 ) ) | |
| 18 | 11 12 16 17 | mpbir3an | ⊢ 4 ∈ ( ℤ≥ ‘ 2 ) |
| 19 | fzsplit2 | ⊢ ( ( ( 2 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 4 ∈ ( ℤ≥ ‘ 2 ) ) → ( 0 ... 4 ) = ( ( 0 ... 2 ) ∪ ( ( 2 + 1 ) ... 4 ) ) ) | |
| 20 | 10 18 19 | mp2an | ⊢ ( 0 ... 4 ) = ( ( 0 ... 2 ) ∪ ( ( 2 + 1 ) ... 4 ) ) |
| 21 | fz0tp | ⊢ ( 0 ... 2 ) = { 0 , 1 , 2 } | |
| 22 | 1 | oveq1i | ⊢ ( ( 2 + 1 ) ... 4 ) = ( 3 ... 4 ) |
| 23 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 24 | 23 | oveq2i | ⊢ ( 3 ... 4 ) = ( 3 ... ( 3 + 1 ) ) |
| 25 | fzpr | ⊢ ( 3 ∈ ℤ → ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } ) | |
| 26 | 3 25 | ax-mp | ⊢ ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } |
| 27 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 28 | 27 | preq2i | ⊢ { 3 , ( 3 + 1 ) } = { 3 , 4 } |
| 29 | 24 26 28 | 3eqtri | ⊢ ( 3 ... 4 ) = { 3 , 4 } |
| 30 | 22 29 | eqtri | ⊢ ( ( 2 + 1 ) ... 4 ) = { 3 , 4 } |
| 31 | 21 30 | uneq12i | ⊢ ( ( 0 ... 2 ) ∪ ( ( 2 + 1 ) ... 4 ) ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |
| 32 | 20 31 | eqtri | ⊢ ( 0 ... 4 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |