This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prm23ge5 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 | ⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) | |
| 2 | 3ioran | ⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ↔ ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) | |
| 3 | 3ianor | ⊢ ( ¬ ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) ↔ ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) ) | |
| 4 | eluz2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) ) | |
| 5 | 3 4 | xchnxbir | ⊢ ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ↔ ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) ) |
| 6 | 5nn | ⊢ 5 ∈ ℕ | |
| 7 | 6 | nnzi | ⊢ 5 ∈ ℤ |
| 8 | 7 | pm2.24i | ⊢ ( ¬ 5 ∈ ℤ → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 9 | pm2.24 | ⊢ ( 𝑃 ∈ ℤ → ( ¬ 𝑃 ∈ ℤ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) | |
| 10 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 11 | 9 10 | syl11 | ⊢ ( ¬ 𝑃 ∈ ℤ → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 12 | 11 | a1d | ⊢ ( ¬ 𝑃 ∈ ℤ → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 13 | 10 | zred | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 14 | 5re | ⊢ 5 ∈ ℝ | |
| 15 | 14 | a1i | ⊢ ( 𝑃 ∈ ℙ → 5 ∈ ℝ ) |
| 16 | 13 15 | ltnled | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 ↔ ¬ 5 ≤ 𝑃 ) ) |
| 17 | prm23lt5 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) | |
| 18 | ioran | ⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ) ↔ ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) ) | |
| 19 | pm2.24 | ⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) | |
| 20 | 18 19 | biimtrrid | ⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 21 | 17 20 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 22 | 21 | ex | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 23 | 16 22 | sylbird | ⊢ ( 𝑃 ∈ ℙ → ( ¬ 5 ≤ 𝑃 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 24 | 23 | com3l | ⊢ ( ¬ 5 ≤ 𝑃 → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 25 | 8 12 24 | 3jaoi | ⊢ ( ( ¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 26 | 5 25 | sylbi | ⊢ ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 27 | 26 | com12 | ⊢ ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ) → ( ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) ) |
| 28 | 27 | 3impia | ⊢ ( ( ¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 29 | 2 28 | sylbi | ⊢ ( ¬ ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) ) |
| 30 | 1 29 | pm2.61i | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) |