This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prm23lt5 | |- ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 2 | 1 | nnnn0d | |- ( P e. Prime -> P e. NN0 ) |
| 3 | 2 | adantr | |- ( ( P e. Prime /\ P < 5 ) -> P e. NN0 ) |
| 4 | 4nn0 | |- 4 e. NN0 |
|
| 5 | 4 | a1i | |- ( ( P e. Prime /\ P < 5 ) -> 4 e. NN0 ) |
| 6 | df-5 | |- 5 = ( 4 + 1 ) |
|
| 7 | 6 | breq2i | |- ( P < 5 <-> P < ( 4 + 1 ) ) |
| 8 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 9 | 4z | |- 4 e. ZZ |
|
| 10 | zleltp1 | |- ( ( P e. ZZ /\ 4 e. ZZ ) -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( P e. Prime -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) |
| 12 | 11 | biimprd | |- ( P e. Prime -> ( P < ( 4 + 1 ) -> P <_ 4 ) ) |
| 13 | 7 12 | biimtrid | |- ( P e. Prime -> ( P < 5 -> P <_ 4 ) ) |
| 14 | 13 | imp | |- ( ( P e. Prime /\ P < 5 ) -> P <_ 4 ) |
| 15 | elfz2nn0 | |- ( P e. ( 0 ... 4 ) <-> ( P e. NN0 /\ 4 e. NN0 /\ P <_ 4 ) ) |
|
| 16 | 3 5 14 15 | syl3anbrc | |- ( ( P e. Prime /\ P < 5 ) -> P e. ( 0 ... 4 ) ) |
| 17 | fz0to4untppr | |- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
|
| 18 | 17 | eleq2i | |- ( P e. ( 0 ... 4 ) <-> P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) |
| 19 | elun | |- ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) <-> ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) ) |
|
| 20 | eltpi | |- ( P e. { 0 , 1 , 2 } -> ( P = 0 \/ P = 1 \/ P = 2 ) ) |
|
| 21 | nnne0 | |- ( P e. NN -> P =/= 0 ) |
|
| 22 | eqneqall | |- ( P = 0 -> ( P =/= 0 -> ( P = 2 \/ P = 3 ) ) ) |
|
| 23 | 22 | com12 | |- ( P =/= 0 -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) |
| 24 | 1 21 23 | 3syl | |- ( P e. Prime -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) |
| 25 | 24 | com12 | |- ( P = 0 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 26 | eleq1 | |- ( P = 1 -> ( P e. Prime <-> 1 e. Prime ) ) |
|
| 27 | 1nprm | |- -. 1 e. Prime |
|
| 28 | 27 | pm2.21i | |- ( 1 e. Prime -> ( P = 2 \/ P = 3 ) ) |
| 29 | 26 28 | biimtrdi | |- ( P = 1 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 30 | orc | |- ( P = 2 -> ( P = 2 \/ P = 3 ) ) |
|
| 31 | 30 | a1d | |- ( P = 2 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 32 | 25 29 31 | 3jaoi | |- ( ( P = 0 \/ P = 1 \/ P = 2 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 33 | 20 32 | syl | |- ( P e. { 0 , 1 , 2 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 34 | elpri | |- ( P e. { 3 , 4 } -> ( P = 3 \/ P = 4 ) ) |
|
| 35 | olc | |- ( P = 3 -> ( P = 2 \/ P = 3 ) ) |
|
| 36 | 35 | a1d | |- ( P = 3 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 37 | eleq1 | |- ( P = 4 -> ( P e. Prime <-> 4 e. Prime ) ) |
|
| 38 | 4nprm | |- -. 4 e. Prime |
|
| 39 | 38 | pm2.21i | |- ( 4 e. Prime -> ( P = 2 \/ P = 3 ) ) |
| 40 | 37 39 | biimtrdi | |- ( P = 4 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 41 | 36 40 | jaoi | |- ( ( P = 3 \/ P = 4 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 42 | 34 41 | syl | |- ( P e. { 3 , 4 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 43 | 33 42 | jaoi | |- ( ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 44 | 19 43 | sylbi | |- ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 45 | 44 | com12 | |- ( P e. Prime -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) |
| 46 | 45 | adantr | |- ( ( P e. Prime /\ P < 5 ) -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) |
| 47 | 18 46 | biimtrid | |- ( ( P e. Prime /\ P < 5 ) -> ( P e. ( 0 ... 4 ) -> ( P = 2 \/ P = 3 ) ) ) |
| 48 | 16 47 | mpd | |- ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) |