This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdspjmhm.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdspjmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdspjmhm.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| prdspjmhm.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | ||
| prdspjmhm.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | ||
| prdspjmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | ||
| Assertion | prdspjmhm | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom ( 𝑅 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdspjmhm.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdspjmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdspjmhm.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | prdspjmhm.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | |
| 5 | prdspjmhm.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 6 | prdspjmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | |
| 7 | 1 3 4 5 | prdsmndd | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 8 | 5 6 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝐴 ) ∈ Mnd ) |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ 𝑋 ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
| 11 | 5 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 Fn 𝐼 ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 14 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝐼 ) |
| 15 | 1 2 9 10 12 13 14 | prdsbasprj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ‘ 𝐴 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) ) |
| 16 | 15 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑋 ) |
| 18 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
| 19 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 Fn 𝐼 ) |
| 20 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 22 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 23 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐼 ) |
| 24 | 1 2 17 18 19 20 21 22 23 | prdsplusgfval | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) = ( ( 𝑦 ‘ 𝐴 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( 𝑧 ‘ 𝐴 ) ) ) |
| 25 | 2 22 | mndcl | ⊢ ( ( 𝑌 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ 𝐵 ) |
| 26 | 25 | 3expb | ⊢ ( ( 𝑌 ∈ Mnd ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ 𝐵 ) |
| 27 | 7 26 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ 𝐵 ) |
| 28 | fveq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) ) | |
| 29 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) | |
| 30 | fvex | ⊢ ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) ∈ V | |
| 31 | 28 29 30 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) ) |
| 32 | 27 31 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) ) |
| 33 | fveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ‘ 𝐴 ) = ( 𝑦 ‘ 𝐴 ) ) | |
| 34 | fvex | ⊢ ( 𝑦 ‘ 𝐴 ) ∈ V | |
| 35 | 33 29 34 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) = ( 𝑦 ‘ 𝐴 ) ) |
| 36 | fveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝐴 ) = ( 𝑧 ‘ 𝐴 ) ) | |
| 37 | fvex | ⊢ ( 𝑧 ‘ 𝐴 ) ∈ V | |
| 38 | 36 29 37 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) = ( 𝑧 ‘ 𝐴 ) ) |
| 39 | 35 38 | oveqan12d | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝐴 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( 𝑧 ‘ 𝐴 ) ) ) |
| 40 | 39 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝐴 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( 𝑧 ‘ 𝐴 ) ) ) |
| 41 | 24 32 40 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) ) |
| 42 | 41 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) ) |
| 43 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 44 | 2 43 | mndidcl | ⊢ ( 𝑌 ∈ Mnd → ( 0g ‘ 𝑌 ) ∈ 𝐵 ) |
| 45 | fveq1 | ⊢ ( 𝑥 = ( 0g ‘ 𝑌 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) | |
| 46 | fvex | ⊢ ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ∈ V | |
| 47 | 45 29 46 | fvmpt | ⊢ ( ( 0g ‘ 𝑌 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 48 | 7 44 47 | 3syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 49 | 1 3 4 5 | prds0g | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑌 ) ) |
| 50 | 49 | fveq1d | ⊢ ( 𝜑 → ( ( 0g ∘ 𝑅 ) ‘ 𝐴 ) = ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 51 | fvco3 | ⊢ ( ( 𝑅 : 𝐼 ⟶ Mnd ∧ 𝐴 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝐴 ) = ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) | |
| 52 | 5 6 51 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ∘ 𝑅 ) ‘ 𝐴 ) = ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) |
| 53 | 48 50 52 | 3eqtr2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) |
| 54 | 16 42 53 | 3jca | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) ) |
| 55 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) = ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) | |
| 56 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) = ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) | |
| 57 | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) | |
| 58 | 2 55 22 56 43 57 | ismhm | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom ( 𝑅 ‘ 𝐴 ) ) ↔ ( ( 𝑌 ∈ Mnd ∧ ( 𝑅 ‘ 𝐴 ) ∈ Mnd ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) ) ) |
| 59 | 7 8 54 58 | syl21anbrc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom ( 𝑅 ‘ 𝐴 ) ) ) |