This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdspjmhm.y | |- Y = ( S Xs_ R ) |
|
| prdspjmhm.b | |- B = ( Base ` Y ) |
||
| prdspjmhm.i | |- ( ph -> I e. V ) |
||
| prdspjmhm.s | |- ( ph -> S e. X ) |
||
| prdspjmhm.r | |- ( ph -> R : I --> Mnd ) |
||
| prdspjmhm.a | |- ( ph -> A e. I ) |
||
| Assertion | prdspjmhm | |- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( Y MndHom ( R ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdspjmhm.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdspjmhm.b | |- B = ( Base ` Y ) |
|
| 3 | prdspjmhm.i | |- ( ph -> I e. V ) |
|
| 4 | prdspjmhm.s | |- ( ph -> S e. X ) |
|
| 5 | prdspjmhm.r | |- ( ph -> R : I --> Mnd ) |
|
| 6 | prdspjmhm.a | |- ( ph -> A e. I ) |
|
| 7 | 1 3 4 5 | prdsmndd | |- ( ph -> Y e. Mnd ) |
| 8 | 5 6 | ffvelcdmd | |- ( ph -> ( R ` A ) e. Mnd ) |
| 9 | 4 | adantr | |- ( ( ph /\ x e. B ) -> S e. X ) |
| 10 | 3 | adantr | |- ( ( ph /\ x e. B ) -> I e. V ) |
| 11 | 5 | ffnd | |- ( ph -> R Fn I ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. B ) -> R Fn I ) |
| 13 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 14 | 6 | adantr | |- ( ( ph /\ x e. B ) -> A e. I ) |
| 15 | 1 2 9 10 12 13 14 | prdsbasprj | |- ( ( ph /\ x e. B ) -> ( x ` A ) e. ( Base ` ( R ` A ) ) ) |
| 16 | 15 | fmpttd | |- ( ph -> ( x e. B |-> ( x ` A ) ) : B --> ( Base ` ( R ` A ) ) ) |
| 17 | 4 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> S e. X ) |
| 18 | 3 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> I e. V ) |
| 19 | 11 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> R Fn I ) |
| 20 | simprl | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> y e. B ) |
|
| 21 | simprr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> z e. B ) |
|
| 22 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 23 | 6 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> A e. I ) |
| 24 | 1 2 17 18 19 20 21 22 23 | prdsplusgfval | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y ( +g ` Y ) z ) ` A ) = ( ( y ` A ) ( +g ` ( R ` A ) ) ( z ` A ) ) ) |
| 25 | 2 22 | mndcl | |- ( ( Y e. Mnd /\ y e. B /\ z e. B ) -> ( y ( +g ` Y ) z ) e. B ) |
| 26 | 25 | 3expb | |- ( ( Y e. Mnd /\ ( y e. B /\ z e. B ) ) -> ( y ( +g ` Y ) z ) e. B ) |
| 27 | 7 26 | sylan | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( +g ` Y ) z ) e. B ) |
| 28 | fveq1 | |- ( x = ( y ( +g ` Y ) z ) -> ( x ` A ) = ( ( y ( +g ` Y ) z ) ` A ) ) |
|
| 29 | eqid | |- ( x e. B |-> ( x ` A ) ) = ( x e. B |-> ( x ` A ) ) |
|
| 30 | fvex | |- ( ( y ( +g ` Y ) z ) ` A ) e. _V |
|
| 31 | 28 29 30 | fvmpt | |- ( ( y ( +g ` Y ) z ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( y ( +g ` Y ) z ) ) = ( ( y ( +g ` Y ) z ) ` A ) ) |
| 32 | 27 31 | syl | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( y ( +g ` Y ) z ) ) = ( ( y ( +g ` Y ) z ) ` A ) ) |
| 33 | fveq1 | |- ( x = y -> ( x ` A ) = ( y ` A ) ) |
|
| 34 | fvex | |- ( y ` A ) e. _V |
|
| 35 | 33 29 34 | fvmpt | |- ( y e. B -> ( ( x e. B |-> ( x ` A ) ) ` y ) = ( y ` A ) ) |
| 36 | fveq1 | |- ( x = z -> ( x ` A ) = ( z ` A ) ) |
|
| 37 | fvex | |- ( z ` A ) e. _V |
|
| 38 | 36 29 37 | fvmpt | |- ( z e. B -> ( ( x e. B |-> ( x ` A ) ) ` z ) = ( z ` A ) ) |
| 39 | 35 38 | oveqan12d | |- ( ( y e. B /\ z e. B ) -> ( ( ( x e. B |-> ( x ` A ) ) ` y ) ( +g ` ( R ` A ) ) ( ( x e. B |-> ( x ` A ) ) ` z ) ) = ( ( y ` A ) ( +g ` ( R ` A ) ) ( z ` A ) ) ) |
| 40 | 39 | adantl | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( ( x e. B |-> ( x ` A ) ) ` y ) ( +g ` ( R ` A ) ) ( ( x e. B |-> ( x ` A ) ) ` z ) ) = ( ( y ` A ) ( +g ` ( R ` A ) ) ( z ` A ) ) ) |
| 41 | 24 32 40 | 3eqtr4d | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( y ( +g ` Y ) z ) ) = ( ( ( x e. B |-> ( x ` A ) ) ` y ) ( +g ` ( R ` A ) ) ( ( x e. B |-> ( x ` A ) ) ` z ) ) ) |
| 42 | 41 | ralrimivva | |- ( ph -> A. y e. B A. z e. B ( ( x e. B |-> ( x ` A ) ) ` ( y ( +g ` Y ) z ) ) = ( ( ( x e. B |-> ( x ` A ) ) ` y ) ( +g ` ( R ` A ) ) ( ( x e. B |-> ( x ` A ) ) ` z ) ) ) |
| 43 | eqid | |- ( 0g ` Y ) = ( 0g ` Y ) |
|
| 44 | 2 43 | mndidcl | |- ( Y e. Mnd -> ( 0g ` Y ) e. B ) |
| 45 | fveq1 | |- ( x = ( 0g ` Y ) -> ( x ` A ) = ( ( 0g ` Y ) ` A ) ) |
|
| 46 | fvex | |- ( ( 0g ` Y ) ` A ) e. _V |
|
| 47 | 45 29 46 | fvmpt | |- ( ( 0g ` Y ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( 0g ` Y ) ) = ( ( 0g ` Y ) ` A ) ) |
| 48 | 7 44 47 | 3syl | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 0g ` Y ) ) = ( ( 0g ` Y ) ` A ) ) |
| 49 | 1 3 4 5 | prds0g | |- ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) |
| 50 | 49 | fveq1d | |- ( ph -> ( ( 0g o. R ) ` A ) = ( ( 0g ` Y ) ` A ) ) |
| 51 | fvco3 | |- ( ( R : I --> Mnd /\ A e. I ) -> ( ( 0g o. R ) ` A ) = ( 0g ` ( R ` A ) ) ) |
|
| 52 | 5 6 51 | syl2anc | |- ( ph -> ( ( 0g o. R ) ` A ) = ( 0g ` ( R ` A ) ) ) |
| 53 | 48 50 52 | 3eqtr2d | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 0g ` Y ) ) = ( 0g ` ( R ` A ) ) ) |
| 54 | 16 42 53 | 3jca | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) : B --> ( Base ` ( R ` A ) ) /\ A. y e. B A. z e. B ( ( x e. B |-> ( x ` A ) ) ` ( y ( +g ` Y ) z ) ) = ( ( ( x e. B |-> ( x ` A ) ) ` y ) ( +g ` ( R ` A ) ) ( ( x e. B |-> ( x ` A ) ) ` z ) ) /\ ( ( x e. B |-> ( x ` A ) ) ` ( 0g ` Y ) ) = ( 0g ` ( R ` A ) ) ) ) |
| 55 | eqid | |- ( Base ` ( R ` A ) ) = ( Base ` ( R ` A ) ) |
|
| 56 | eqid | |- ( +g ` ( R ` A ) ) = ( +g ` ( R ` A ) ) |
|
| 57 | eqid | |- ( 0g ` ( R ` A ) ) = ( 0g ` ( R ` A ) ) |
|
| 58 | 2 55 22 56 43 57 | ismhm | |- ( ( x e. B |-> ( x ` A ) ) e. ( Y MndHom ( R ` A ) ) <-> ( ( Y e. Mnd /\ ( R ` A ) e. Mnd ) /\ ( ( x e. B |-> ( x ` A ) ) : B --> ( Base ` ( R ` A ) ) /\ A. y e. B A. z e. B ( ( x e. B |-> ( x ` A ) ) ` ( y ( +g ` Y ) z ) ) = ( ( ( x e. B |-> ( x ` A ) ) ` y ) ( +g ` ( R ` A ) ) ( ( x e. B |-> ( x ` A ) ) ` z ) ) /\ ( ( x e. B |-> ( x ` A ) ) ` ( 0g ` Y ) ) = ( 0g ` ( R ` A ) ) ) ) ) |
| 59 | 7 8 54 58 | syl21anbrc | |- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( Y MndHom ( R ` A ) ) ) |