This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmndd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsmndd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsmndd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsmndd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | ||
| Assertion | prds0g | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmndd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsmndd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdsmndd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsmndd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 7 | 3 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 8 | 2 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 9 | eqid | ⊢ ( 0g ∘ 𝑅 ) = ( 0g ∘ 𝑅 ) | |
| 10 | 1 5 6 7 8 4 9 | prdsidlem | ⊢ ( 𝜑 → ( ( 0g ∘ 𝑅 ) ∈ ( Base ‘ 𝑌 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( ( 0g ∘ 𝑅 ) ( +g ‘ 𝑌 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑌 ) ( 0g ∘ 𝑅 ) ) = 𝑏 ) ) ) |
| 11 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 12 | 1 2 3 4 | prdsmndd | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 13 | 5 6 | mndid | ⊢ ( 𝑌 ∈ Mnd → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) = 𝑏 ) ) |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) = 𝑏 ) ) |
| 15 | 5 11 6 14 | ismgmid | ⊢ ( 𝜑 → ( ( ( 0g ∘ 𝑅 ) ∈ ( Base ‘ 𝑌 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( ( 0g ∘ 𝑅 ) ( +g ‘ 𝑌 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑌 ) ( 0g ∘ 𝑅 ) ) = 𝑏 ) ) ↔ ( 0g ‘ 𝑌 ) = ( 0g ∘ 𝑅 ) ) ) |
| 16 | 10 15 | mpbid | ⊢ ( 𝜑 → ( 0g ‘ 𝑌 ) = ( 0g ∘ 𝑅 ) ) |
| 17 | 16 | eqcomd | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑌 ) ) |