This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Analogue of an4 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3an6 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ∧ ( 𝜏 ∧ 𝜂 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an6 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ∧ ( 𝜏 ∧ 𝜂 ) ) ) | |
| 2 | 1 | bicomi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ∧ ( 𝜏 ∧ 𝜂 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) ) |