This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | jaao.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| jaao.2 | ⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) | ||
| Assertion | jaao | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∨ 𝜏 ) → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaao.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | jaao.2 | ⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 → 𝜒 ) ) |
| 4 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜏 → 𝜒 ) ) |
| 5 | 3 4 | jaod | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∨ 𝜏 ) → 𝜒 ) ) |