This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized polarization identity. Generalization of Exercise 4(a) of ReedSimon p. 63. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | polid2.1 | ⊢ 𝐴 ∈ ℋ | |
| polid2.2 | ⊢ 𝐵 ∈ ℋ | ||
| polid2.3 | ⊢ 𝐶 ∈ ℋ | ||
| polid2.4 | ⊢ 𝐷 ∈ ℋ | ||
| Assertion | polid2i | ⊢ ( 𝐴 ·ih 𝐵 ) = ( ( ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polid2.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | polid2.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | polid2.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | polid2.4 | ⊢ 𝐷 ∈ ℋ | |
| 5 | 4cn | ⊢ 4 ∈ ℂ | |
| 6 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 7 | 4ne0 | ⊢ 4 ≠ 0 | |
| 8 | 2cn | ⊢ 2 ∈ ℂ | |
| 9 | 3 4 | hicli | ⊢ ( 𝐶 ·ih 𝐷 ) ∈ ℂ |
| 10 | 6 9 | addcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ∈ ℂ |
| 11 | 6 9 | subcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ∈ ℂ |
| 12 | 8 10 11 | adddii | ⊢ ( 2 · ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) + ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 13 | ppncan | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐶 ·ih 𝐷 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) → ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) = ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐵 ) ) ) | |
| 14 | 6 9 6 13 | mp3an | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) = ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐵 ) ) |
| 15 | 6 | 2timesi | ⊢ ( 2 · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐵 ) ) |
| 16 | 14 15 | eqtr4i | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) = ( 2 · ( 𝐴 ·ih 𝐵 ) ) |
| 17 | 16 | oveq2i | ⊢ ( 2 · ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) = ( 2 · ( 2 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 18 | 8 8 6 | mulassi | ⊢ ( ( 2 · 2 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 2 · ( 2 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 19 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 20 | 19 | oveq1i | ⊢ ( ( 2 · 2 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 4 · ( 𝐴 ·ih 𝐵 ) ) |
| 21 | 17 18 20 | 3eqtr2ri | ⊢ ( 4 · ( 𝐴 ·ih 𝐵 ) ) = ( 2 · ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 22 | 1 4 | hicli | ⊢ ( 𝐴 ·ih 𝐷 ) ∈ ℂ |
| 23 | 3 2 | hicli | ⊢ ( 𝐶 ·ih 𝐵 ) ∈ ℂ |
| 24 | 22 23 | addcli | ⊢ ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) ∈ ℂ |
| 25 | 24 10 10 | pnncani | ⊢ ( ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 26 | 1 3 4 2 | normlem8 | ⊢ ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 27 | 1 3 4 2 | normlem9 | ⊢ ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 28 | 26 27 | oveq12i | ⊢ ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) = ( ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 29 | 10 | 2timesi | ⊢ ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 30 | 25 28 29 | 3eqtr4i | ⊢ ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) = ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 31 | ax-icn | ⊢ i ∈ ℂ | |
| 32 | 31 3 | hvmulcli | ⊢ ( i ·ℎ 𝐶 ) ∈ ℋ |
| 33 | 31 2 | hvmulcli | ⊢ ( i ·ℎ 𝐵 ) ∈ ℋ |
| 34 | 1 32 4 33 | normlem8 | ⊢ ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
| 35 | 1 32 4 33 | normlem9 | ⊢ ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
| 36 | 34 35 | oveq12i | ⊢ ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) ) |
| 37 | 32 33 | hicli | ⊢ ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ∈ ℂ |
| 38 | 22 37 | addcli | ⊢ ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) ∈ ℂ |
| 39 | 1 33 | hicli | ⊢ ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) ∈ ℂ |
| 40 | 32 4 | hicli | ⊢ ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ∈ ℂ |
| 41 | 39 40 | addcli | ⊢ ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ∈ ℂ |
| 42 | 38 41 41 | pnncani | ⊢ ( ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) ) = ( ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
| 43 | 41 | 2timesi | ⊢ ( 2 · ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) = ( ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
| 44 | his5 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 ·ih 𝐵 ) ) ) | |
| 45 | 31 1 2 44 | mp3an | ⊢ ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 ·ih 𝐵 ) ) |
| 46 | cji | ⊢ ( ∗ ‘ i ) = - i | |
| 47 | 46 | oveq1i | ⊢ ( ( ∗ ‘ i ) · ( 𝐴 ·ih 𝐵 ) ) = ( - i · ( 𝐴 ·ih 𝐵 ) ) |
| 48 | 45 47 | eqtri | ⊢ ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) = ( - i · ( 𝐴 ·ih 𝐵 ) ) |
| 49 | ax-his3 | ⊢ ( ( i ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) = ( i · ( 𝐶 ·ih 𝐷 ) ) ) | |
| 50 | 31 3 4 49 | mp3an | ⊢ ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) = ( i · ( 𝐶 ·ih 𝐷 ) ) |
| 51 | 48 50 | oveq12i | ⊢ ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) = ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) |
| 52 | 51 | oveq2i | ⊢ ( 2 · ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) = ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 53 | 43 52 | eqtr3i | ⊢ ( ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) = ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 54 | 36 42 53 | 3eqtri | ⊢ ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 55 | 54 | oveq2i | ⊢ ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( i · ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) |
| 56 | negicn | ⊢ - i ∈ ℂ | |
| 57 | 56 6 | mulcli | ⊢ ( - i · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
| 58 | 31 9 | mulcli | ⊢ ( i · ( 𝐶 ·ih 𝐷 ) ) ∈ ℂ |
| 59 | 57 58 | addcli | ⊢ ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ∈ ℂ |
| 60 | 8 31 59 | mul12i | ⊢ ( 2 · ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) = ( i · ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) |
| 61 | 31 57 58 | adddii | ⊢ ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) + ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 62 | 31 31 | mulneg2i | ⊢ ( i · - i ) = - ( i · i ) |
| 63 | ixi | ⊢ ( i · i ) = - 1 | |
| 64 | 63 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 65 | negneg1e1 | ⊢ - - 1 = 1 | |
| 66 | 62 64 65 | 3eqtri | ⊢ ( i · - i ) = 1 |
| 67 | 66 | oveq1i | ⊢ ( ( i · - i ) · ( 𝐴 ·ih 𝐵 ) ) = ( 1 · ( 𝐴 ·ih 𝐵 ) ) |
| 68 | 31 56 6 | mulassi | ⊢ ( ( i · - i ) · ( 𝐴 ·ih 𝐵 ) ) = ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) |
| 69 | 6 | mullidi | ⊢ ( 1 · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) |
| 70 | 67 68 69 | 3eqtr3i | ⊢ ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) = ( 𝐴 ·ih 𝐵 ) |
| 71 | 63 | oveq1i | ⊢ ( ( i · i ) · ( 𝐶 ·ih 𝐷 ) ) = ( - 1 · ( 𝐶 ·ih 𝐷 ) ) |
| 72 | 31 31 9 | mulassi | ⊢ ( ( i · i ) · ( 𝐶 ·ih 𝐷 ) ) = ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) |
| 73 | 9 | mulm1i | ⊢ ( - 1 · ( 𝐶 ·ih 𝐷 ) ) = - ( 𝐶 ·ih 𝐷 ) |
| 74 | 71 72 73 | 3eqtr3i | ⊢ ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) = - ( 𝐶 ·ih 𝐷 ) |
| 75 | 70 74 | oveq12i | ⊢ ( ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) + ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( 𝐴 ·ih 𝐵 ) + - ( 𝐶 ·ih 𝐷 ) ) |
| 76 | 6 9 | negsubi | ⊢ ( ( 𝐴 ·ih 𝐵 ) + - ( 𝐶 ·ih 𝐷 ) ) = ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) |
| 77 | 61 75 76 | 3eqtri | ⊢ ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) |
| 78 | 77 | oveq2i | ⊢ ( 2 · ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) = ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) |
| 79 | 55 60 78 | 3eqtr2i | ⊢ ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) |
| 80 | 30 79 | oveq12i | ⊢ ( ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) = ( ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) + ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 81 | 12 21 80 | 3eqtr4i | ⊢ ( 4 · ( 𝐴 ·ih 𝐵 ) ) = ( ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) |
| 82 | 5 6 7 81 | mvllmuli | ⊢ ( 𝐴 ·ih 𝐵 ) = ( ( ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) / 4 ) |