This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized polarization identity. Generalization of Exercise 4(a) of ReedSimon p. 63. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | polid2.1 | |- A e. ~H |
|
| polid2.2 | |- B e. ~H |
||
| polid2.3 | |- C e. ~H |
||
| polid2.4 | |- D e. ~H |
||
| Assertion | polid2i | |- ( A .ih B ) = ( ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polid2.1 | |- A e. ~H |
|
| 2 | polid2.2 | |- B e. ~H |
|
| 3 | polid2.3 | |- C e. ~H |
|
| 4 | polid2.4 | |- D e. ~H |
|
| 5 | 4cn | |- 4 e. CC |
|
| 6 | 1 2 | hicli | |- ( A .ih B ) e. CC |
| 7 | 4ne0 | |- 4 =/= 0 |
|
| 8 | 2cn | |- 2 e. CC |
|
| 9 | 3 4 | hicli | |- ( C .ih D ) e. CC |
| 10 | 6 9 | addcli | |- ( ( A .ih B ) + ( C .ih D ) ) e. CC |
| 11 | 6 9 | subcli | |- ( ( A .ih B ) - ( C .ih D ) ) e. CC |
| 12 | 8 10 11 | adddii | |- ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) = ( ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) + ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) ) |
| 13 | ppncan | |- ( ( ( A .ih B ) e. CC /\ ( C .ih D ) e. CC /\ ( A .ih B ) e. CC ) -> ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( ( A .ih B ) + ( A .ih B ) ) ) |
|
| 14 | 6 9 6 13 | mp3an | |- ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( ( A .ih B ) + ( A .ih B ) ) |
| 15 | 6 | 2timesi | |- ( 2 x. ( A .ih B ) ) = ( ( A .ih B ) + ( A .ih B ) ) |
| 16 | 14 15 | eqtr4i | |- ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( 2 x. ( A .ih B ) ) |
| 17 | 16 | oveq2i | |- ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) = ( 2 x. ( 2 x. ( A .ih B ) ) ) |
| 18 | 8 8 6 | mulassi | |- ( ( 2 x. 2 ) x. ( A .ih B ) ) = ( 2 x. ( 2 x. ( A .ih B ) ) ) |
| 19 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 20 | 19 | oveq1i | |- ( ( 2 x. 2 ) x. ( A .ih B ) ) = ( 4 x. ( A .ih B ) ) |
| 21 | 17 18 20 | 3eqtr2ri | |- ( 4 x. ( A .ih B ) ) = ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) |
| 22 | 1 4 | hicli | |- ( A .ih D ) e. CC |
| 23 | 3 2 | hicli | |- ( C .ih B ) e. CC |
| 24 | 22 23 | addcli | |- ( ( A .ih D ) + ( C .ih B ) ) e. CC |
| 25 | 24 10 10 | pnncani | |- ( ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) - ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) ) = ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) |
| 26 | 1 3 4 2 | normlem8 | |- ( ( A +h C ) .ih ( D +h B ) ) = ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) |
| 27 | 1 3 4 2 | normlem9 | |- ( ( A -h C ) .ih ( D -h B ) ) = ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) |
| 28 | 26 27 | oveq12i | |- ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) = ( ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) - ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) ) |
| 29 | 10 | 2timesi | |- ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) = ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) |
| 30 | 25 28 29 | 3eqtr4i | |- ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) = ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) |
| 31 | ax-icn | |- _i e. CC |
|
| 32 | 31 3 | hvmulcli | |- ( _i .h C ) e. ~H |
| 33 | 31 2 | hvmulcli | |- ( _i .h B ) e. ~H |
| 34 | 1 32 4 33 | normlem8 | |- ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) = ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
| 35 | 1 32 4 33 | normlem9 | |- ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) = ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
| 36 | 34 35 | oveq12i | |- ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) = ( ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) - ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) ) |
| 37 | 32 33 | hicli | |- ( ( _i .h C ) .ih ( _i .h B ) ) e. CC |
| 38 | 22 37 | addcli | |- ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) e. CC |
| 39 | 1 33 | hicli | |- ( A .ih ( _i .h B ) ) e. CC |
| 40 | 32 4 | hicli | |- ( ( _i .h C ) .ih D ) e. CC |
| 41 | 39 40 | addcli | |- ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) e. CC |
| 42 | 38 41 41 | pnncani | |- ( ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) - ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) ) = ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
| 43 | 41 | 2timesi | |- ( 2 x. ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
| 44 | his5 | |- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( _i .h B ) ) = ( ( * ` _i ) x. ( A .ih B ) ) ) |
|
| 45 | 31 1 2 44 | mp3an | |- ( A .ih ( _i .h B ) ) = ( ( * ` _i ) x. ( A .ih B ) ) |
| 46 | cji | |- ( * ` _i ) = -u _i |
|
| 47 | 46 | oveq1i | |- ( ( * ` _i ) x. ( A .ih B ) ) = ( -u _i x. ( A .ih B ) ) |
| 48 | 45 47 | eqtri | |- ( A .ih ( _i .h B ) ) = ( -u _i x. ( A .ih B ) ) |
| 49 | ax-his3 | |- ( ( _i e. CC /\ C e. ~H /\ D e. ~H ) -> ( ( _i .h C ) .ih D ) = ( _i x. ( C .ih D ) ) ) |
|
| 50 | 31 3 4 49 | mp3an | |- ( ( _i .h C ) .ih D ) = ( _i x. ( C .ih D ) ) |
| 51 | 48 50 | oveq12i | |- ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) = ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) |
| 52 | 51 | oveq2i | |- ( 2 x. ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) |
| 53 | 43 52 | eqtr3i | |- ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) |
| 54 | 36 42 53 | 3eqtri | |- ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) |
| 55 | 54 | oveq2i | |- ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) = ( _i x. ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) |
| 56 | negicn | |- -u _i e. CC |
|
| 57 | 56 6 | mulcli | |- ( -u _i x. ( A .ih B ) ) e. CC |
| 58 | 31 9 | mulcli | |- ( _i x. ( C .ih D ) ) e. CC |
| 59 | 57 58 | addcli | |- ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) e. CC |
| 60 | 8 31 59 | mul12i | |- ( 2 x. ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) = ( _i x. ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) |
| 61 | 31 57 58 | adddii | |- ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) = ( ( _i x. ( -u _i x. ( A .ih B ) ) ) + ( _i x. ( _i x. ( C .ih D ) ) ) ) |
| 62 | 31 31 | mulneg2i | |- ( _i x. -u _i ) = -u ( _i x. _i ) |
| 63 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 64 | 63 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 65 | negneg1e1 | |- -u -u 1 = 1 |
|
| 66 | 62 64 65 | 3eqtri | |- ( _i x. -u _i ) = 1 |
| 67 | 66 | oveq1i | |- ( ( _i x. -u _i ) x. ( A .ih B ) ) = ( 1 x. ( A .ih B ) ) |
| 68 | 31 56 6 | mulassi | |- ( ( _i x. -u _i ) x. ( A .ih B ) ) = ( _i x. ( -u _i x. ( A .ih B ) ) ) |
| 69 | 6 | mullidi | |- ( 1 x. ( A .ih B ) ) = ( A .ih B ) |
| 70 | 67 68 69 | 3eqtr3i | |- ( _i x. ( -u _i x. ( A .ih B ) ) ) = ( A .ih B ) |
| 71 | 63 | oveq1i | |- ( ( _i x. _i ) x. ( C .ih D ) ) = ( -u 1 x. ( C .ih D ) ) |
| 72 | 31 31 9 | mulassi | |- ( ( _i x. _i ) x. ( C .ih D ) ) = ( _i x. ( _i x. ( C .ih D ) ) ) |
| 73 | 9 | mulm1i | |- ( -u 1 x. ( C .ih D ) ) = -u ( C .ih D ) |
| 74 | 71 72 73 | 3eqtr3i | |- ( _i x. ( _i x. ( C .ih D ) ) ) = -u ( C .ih D ) |
| 75 | 70 74 | oveq12i | |- ( ( _i x. ( -u _i x. ( A .ih B ) ) ) + ( _i x. ( _i x. ( C .ih D ) ) ) ) = ( ( A .ih B ) + -u ( C .ih D ) ) |
| 76 | 6 9 | negsubi | |- ( ( A .ih B ) + -u ( C .ih D ) ) = ( ( A .ih B ) - ( C .ih D ) ) |
| 77 | 61 75 76 | 3eqtri | |- ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) = ( ( A .ih B ) - ( C .ih D ) ) |
| 78 | 77 | oveq2i | |- ( 2 x. ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) = ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) |
| 79 | 55 60 78 | 3eqtr2i | |- ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) = ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) |
| 80 | 30 79 | oveq12i | |- ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) = ( ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) + ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) ) |
| 81 | 12 21 80 | 3eqtr4i | |- ( 4 x. ( A .ih B ) ) = ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) |
| 82 | 5 6 7 81 | mvllmuli | |- ( A .ih B ) = ( ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) / 4 ) |