This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem8.1 | ⊢ 𝐴 ∈ ℋ | |
| normlem8.2 | ⊢ 𝐵 ∈ ℋ | ||
| normlem8.3 | ⊢ 𝐶 ∈ ℋ | ||
| normlem8.4 | ⊢ 𝐷 ∈ ℋ | ||
| Assertion | normlem9 | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) − ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem8.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normlem8.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | normlem8.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | normlem8.4 | ⊢ 𝐷 ∈ ℋ | |
| 5 | 1 2 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 6 | 3 4 | hvsubvali | ⊢ ( 𝐶 −ℎ 𝐷 ) = ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) |
| 7 | 5 6 | oveq12i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 8 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 9 | 8 2 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 10 | 8 4 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐷 ) ∈ ℋ |
| 11 | 1 9 3 10 | normlem8 | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) + ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) |
| 12 | ax-his3 | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) = ( - 1 · ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) ) ) | |
| 13 | 8 2 10 12 | mp3an | ⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) = ( - 1 · ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) ) |
| 14 | his5 | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) | |
| 15 | 8 2 4 14 | mp3an | ⊢ ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) |
| 16 | 15 | oveq2i | ⊢ ( - 1 · ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) ) = ( - 1 · ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) |
| 17 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 18 | cjre | ⊢ ( - 1 ∈ ℝ → ( ∗ ‘ - 1 ) = - 1 ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ∗ ‘ - 1 ) = - 1 |
| 20 | 19 | oveq2i | ⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = ( - 1 · - 1 ) |
| 21 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 22 | 21 21 | mul2negi | ⊢ ( - 1 · - 1 ) = ( 1 · 1 ) |
| 23 | 21 | mullidi | ⊢ ( 1 · 1 ) = 1 |
| 24 | 20 22 23 | 3eqtri | ⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = 1 |
| 25 | 24 | oveq1i | ⊢ ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( 𝐵 ·ih 𝐷 ) ) = ( 1 · ( 𝐵 ·ih 𝐷 ) ) |
| 26 | 8 | cjcli | ⊢ ( ∗ ‘ - 1 ) ∈ ℂ |
| 27 | 2 4 | hicli | ⊢ ( 𝐵 ·ih 𝐷 ) ∈ ℂ |
| 28 | 8 26 27 | mulassi | ⊢ ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( 𝐵 ·ih 𝐷 ) ) = ( - 1 · ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) |
| 29 | 27 | mullidi | ⊢ ( 1 · ( 𝐵 ·ih 𝐷 ) ) = ( 𝐵 ·ih 𝐷 ) |
| 30 | 25 28 29 | 3eqtr3i | ⊢ ( - 1 · ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) = ( 𝐵 ·ih 𝐷 ) |
| 31 | 13 16 30 | 3eqtri | ⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) = ( 𝐵 ·ih 𝐷 ) |
| 32 | 31 | oveq2i | ⊢ ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) |
| 33 | his5 | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐴 ·ih 𝐷 ) ) ) | |
| 34 | 8 1 4 33 | mp3an | ⊢ ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐴 ·ih 𝐷 ) ) |
| 35 | 19 | oveq1i | ⊢ ( ( ∗ ‘ - 1 ) · ( 𝐴 ·ih 𝐷 ) ) = ( - 1 · ( 𝐴 ·ih 𝐷 ) ) |
| 36 | 1 4 | hicli | ⊢ ( 𝐴 ·ih 𝐷 ) ∈ ℂ |
| 37 | 36 | mulm1i | ⊢ ( - 1 · ( 𝐴 ·ih 𝐷 ) ) = - ( 𝐴 ·ih 𝐷 ) |
| 38 | 34 35 37 | 3eqtri | ⊢ ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) = - ( 𝐴 ·ih 𝐷 ) |
| 39 | ax-his3 | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = ( - 1 · ( 𝐵 ·ih 𝐶 ) ) ) | |
| 40 | 8 2 3 39 | mp3an | ⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = ( - 1 · ( 𝐵 ·ih 𝐶 ) ) |
| 41 | 2 3 | hicli | ⊢ ( 𝐵 ·ih 𝐶 ) ∈ ℂ |
| 42 | 41 | mulm1i | ⊢ ( - 1 · ( 𝐵 ·ih 𝐶 ) ) = - ( 𝐵 ·ih 𝐶 ) |
| 43 | 40 42 | eqtri | ⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = - ( 𝐵 ·ih 𝐶 ) |
| 44 | 38 43 | oveq12i | ⊢ ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) = ( - ( 𝐴 ·ih 𝐷 ) + - ( 𝐵 ·ih 𝐶 ) ) |
| 45 | 36 41 | negdii | ⊢ - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) = ( - ( 𝐴 ·ih 𝐷 ) + - ( 𝐵 ·ih 𝐶 ) ) |
| 46 | 44 45 | eqtr4i | ⊢ ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) = - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) |
| 47 | 32 46 | oveq12i | ⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) + ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
| 48 | 1 3 | hicli | ⊢ ( 𝐴 ·ih 𝐶 ) ∈ ℂ |
| 49 | 48 27 | addcli | ⊢ ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ∈ ℂ |
| 50 | 36 41 | addcli | ⊢ ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ∈ ℂ |
| 51 | 49 50 | negsubi | ⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) − ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
| 52 | 47 51 | eqtri | ⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) + ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) − ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
| 53 | 7 11 52 | 3eqtri | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) − ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |