This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem8.1 | ⊢ 𝐴 ∈ ℋ | |
| normlem8.2 | ⊢ 𝐵 ∈ ℋ | ||
| normlem8.3 | ⊢ 𝐶 ∈ ℋ | ||
| normlem8.4 | ⊢ 𝐷 ∈ ℋ | ||
| Assertion | normlem8 | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem8.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normlem8.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | normlem8.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | normlem8.4 | ⊢ 𝐷 ∈ ℋ | |
| 5 | his7 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) ) | |
| 6 | 1 3 4 5 | mp3an | ⊢ ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) |
| 7 | his7 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ) | |
| 8 | 2 3 4 7 | mp3an | ⊢ ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) |
| 9 | 6 8 | oveq12i | ⊢ ( ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) + ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) + ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ) |
| 10 | 3 4 | hvaddcli | ⊢ ( 𝐶 +ℎ 𝐷 ) ∈ ℋ |
| 11 | ax-his2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( 𝐶 +ℎ 𝐷 ) ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) + ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) ) ) | |
| 12 | 1 2 10 11 | mp3an | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) + ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) ) |
| 13 | 1 3 | hicli | ⊢ ( 𝐴 ·ih 𝐶 ) ∈ ℂ |
| 14 | 2 4 | hicli | ⊢ ( 𝐵 ·ih 𝐷 ) ∈ ℂ |
| 15 | 1 4 | hicli | ⊢ ( 𝐴 ·ih 𝐷 ) ∈ ℂ |
| 16 | 2 3 | hicli | ⊢ ( 𝐵 ·ih 𝐶 ) ∈ ℂ |
| 17 | 13 14 15 16 | add42i | ⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) + ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ) |
| 18 | 9 12 17 | 3eqtr4i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |