This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of ReedSimon p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 . (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | polid.1 | ⊢ 𝐴 ∈ ℋ | |
| polid.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | polidi | ⊢ ( 𝐴 ·ih 𝐵 ) = ( ( ( ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) ) ) ) / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polid.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | polid.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 2 2 1 | polid2i | ⊢ ( 𝐴 ·ih 𝐵 ) = ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) / 4 ) |
| 4 | 1 2 | hvaddcli | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 5 | 4 | normsqi | ⊢ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) |
| 6 | 1 2 | hvsubcli | ⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 7 | 6 | normsqi | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) |
| 8 | 5 7 | oveq12i | ⊢ ( ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) |
| 9 | ax-icn | ⊢ i ∈ ℂ | |
| 10 | 9 2 | hvmulcli | ⊢ ( i ·ℎ 𝐵 ) ∈ ℋ |
| 11 | 1 10 | hvaddcli | ⊢ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ |
| 12 | 11 | normsqi | ⊢ ( ( normℎ ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) |
| 13 | 1 10 | hvsubcli | ⊢ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ |
| 14 | 13 | normsqi | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) |
| 15 | 12 14 | oveq12i | ⊢ ( ( ( normℎ ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 16 | 15 | oveq2i | ⊢ ( i · ( ( ( normℎ ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) ) ) = ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 17 | 8 16 | oveq12i | ⊢ ( ( ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) |
| 18 | 17 | oveq1i | ⊢ ( ( ( ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) ) ) ) / 4 ) = ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) / 4 ) |
| 19 | 3 18 | eqtr4i | ⊢ ( 𝐴 ·ih 𝐵 ) = ( ( ( ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ↑ 2 ) ) ) ) / 4 ) |