This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for pmtrdifel . (Contributed by AV, 28-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | ||
| Assertion | pmtrdifellem4 | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 ‘ 𝐾 ) = 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | |
| 4 | 1 2 3 | pmtrdifellem1 | ⊢ ( 𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅 ) |
| 5 | eqid | ⊢ ( pmTrsp ‘ 𝑁 ) = ( pmTrsp ‘ 𝑁 ) | |
| 6 | eqid | ⊢ dom ( 𝑆 ∖ I ) = dom ( 𝑆 ∖ I ) | |
| 7 | 5 2 6 | pmtrffv | ⊢ ( ( 𝑆 ∈ 𝑅 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 ‘ 𝐾 ) = if ( 𝐾 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝐾 } ) , 𝐾 ) ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 ‘ 𝐾 ) = if ( 𝐾 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝐾 } ) , 𝐾 ) ) |
| 9 | eqid | ⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 10 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 11 | 1 9 10 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 12 | 11 | sseli | ⊢ ( 𝑄 ∈ 𝑇 → 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 13 | 9 10 | symgbasf | ⊢ ( 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) ) |
| 14 | ffn | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) → 𝑄 Fn ( 𝑁 ∖ { 𝐾 } ) ) | |
| 15 | fndifnfp | ⊢ ( 𝑄 Fn ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) | |
| 16 | ssrab2 | ⊢ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ⊆ ( 𝑁 ∖ { 𝐾 } ) | |
| 17 | ssel2 | ⊢ ( ( { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ⊆ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) → 𝐾 ∈ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 18 | eldif | ⊢ ( 𝐾 ∈ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝐾 ∈ 𝑁 ∧ ¬ 𝐾 ∈ { 𝐾 } ) ) | |
| 19 | elsng | ⊢ ( 𝐾 ∈ 𝑁 → ( 𝐾 ∈ { 𝐾 } ↔ 𝐾 = 𝐾 ) ) | |
| 20 | 19 | notbid | ⊢ ( 𝐾 ∈ 𝑁 → ( ¬ 𝐾 ∈ { 𝐾 } ↔ ¬ 𝐾 = 𝐾 ) ) |
| 21 | eqid | ⊢ 𝐾 = 𝐾 | |
| 22 | 21 | pm2.24i | ⊢ ( ¬ 𝐾 = 𝐾 → ¬ 𝐾 ∈ 𝑁 ) |
| 23 | 20 22 | biimtrdi | ⊢ ( 𝐾 ∈ 𝑁 → ( ¬ 𝐾 ∈ { 𝐾 } → ¬ 𝐾 ∈ 𝑁 ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ¬ 𝐾 ∈ { 𝐾 } ) → ¬ 𝐾 ∈ 𝑁 ) |
| 25 | 18 24 | sylbi | ⊢ ( 𝐾 ∈ ( 𝑁 ∖ { 𝐾 } ) → ¬ 𝐾 ∈ 𝑁 ) |
| 26 | 17 25 | syl | ⊢ ( ( { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ⊆ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) → ¬ 𝐾 ∈ 𝑁 ) |
| 27 | 16 26 | mpan | ⊢ ( 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ¬ 𝐾 ∈ 𝑁 ) |
| 28 | 27 | con2i | ⊢ ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) |
| 29 | eleq2 | ⊢ ( dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ( 𝐾 ∈ dom ( 𝑄 ∖ I ) ↔ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) ) | |
| 30 | 29 | notbid | ⊢ ( dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ( ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ↔ ¬ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) ) |
| 31 | 28 30 | imbitrrid | ⊢ ( dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 32 | 14 15 31 | 3syl | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 33 | 12 13 32 | 3syl | ⊢ ( 𝑄 ∈ 𝑇 → ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 34 | 33 | imp | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) |
| 35 | 1 2 3 | pmtrdifellem2 | ⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 36 | 35 | eleq2d | ⊢ ( 𝑄 ∈ 𝑇 → ( 𝐾 ∈ dom ( 𝑆 ∖ I ) ↔ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( 𝐾 ∈ dom ( 𝑆 ∖ I ) ↔ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 38 | 34 37 | mtbird | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ¬ 𝐾 ∈ dom ( 𝑆 ∖ I ) ) |
| 39 | 38 | iffalsed | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → if ( 𝐾 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝐾 } ) , 𝐾 ) = 𝐾 ) |
| 40 | 8 39 | eqtrd | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 ‘ 𝐾 ) = 𝐾 ) |