This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for pmtrdifel . (Contributed by AV, 28-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| pmtrdifel.0 | |- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
||
| Assertion | pmtrdifellem4 | |- ( ( Q e. T /\ K e. N ) -> ( S ` K ) = K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | pmtrdifel.0 | |- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
|
| 4 | 1 2 3 | pmtrdifellem1 | |- ( Q e. T -> S e. R ) |
| 5 | eqid | |- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
|
| 6 | eqid | |- dom ( S \ _I ) = dom ( S \ _I ) |
|
| 7 | 5 2 6 | pmtrffv | |- ( ( S e. R /\ K e. N ) -> ( S ` K ) = if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) ) |
| 8 | 4 7 | sylan | |- ( ( Q e. T /\ K e. N ) -> ( S ` K ) = if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) ) |
| 9 | eqid | |- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
|
| 10 | eqid | |- ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 11 | 1 9 10 | symgtrf | |- T C_ ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
| 12 | 11 | sseli | |- ( Q e. T -> Q e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
| 13 | 9 10 | symgbasf | |- ( Q e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) -> Q : ( N \ { K } ) --> ( N \ { K } ) ) |
| 14 | ffn | |- ( Q : ( N \ { K } ) --> ( N \ { K } ) -> Q Fn ( N \ { K } ) ) |
|
| 15 | fndifnfp | |- ( Q Fn ( N \ { K } ) -> dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) |
|
| 16 | ssrab2 | |- { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) |
|
| 17 | ssel2 | |- ( ( { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) /\ K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) -> K e. ( N \ { K } ) ) |
|
| 18 | eldif | |- ( K e. ( N \ { K } ) <-> ( K e. N /\ -. K e. { K } ) ) |
|
| 19 | elsng | |- ( K e. N -> ( K e. { K } <-> K = K ) ) |
|
| 20 | 19 | notbid | |- ( K e. N -> ( -. K e. { K } <-> -. K = K ) ) |
| 21 | eqid | |- K = K |
|
| 22 | 21 | pm2.24i | |- ( -. K = K -> -. K e. N ) |
| 23 | 20 22 | biimtrdi | |- ( K e. N -> ( -. K e. { K } -> -. K e. N ) ) |
| 24 | 23 | imp | |- ( ( K e. N /\ -. K e. { K } ) -> -. K e. N ) |
| 25 | 18 24 | sylbi | |- ( K e. ( N \ { K } ) -> -. K e. N ) |
| 26 | 17 25 | syl | |- ( ( { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) /\ K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) -> -. K e. N ) |
| 27 | 16 26 | mpan | |- ( K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> -. K e. N ) |
| 28 | 27 | con2i | |- ( K e. N -> -. K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) |
| 29 | eleq2 | |- ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( K e. dom ( Q \ _I ) <-> K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) ) |
|
| 30 | 29 | notbid | |- ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( -. K e. dom ( Q \ _I ) <-> -. K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) ) |
| 31 | 28 30 | imbitrrid | |- ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) |
| 32 | 14 15 31 | 3syl | |- ( Q : ( N \ { K } ) --> ( N \ { K } ) -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) |
| 33 | 12 13 32 | 3syl | |- ( Q e. T -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) |
| 34 | 33 | imp | |- ( ( Q e. T /\ K e. N ) -> -. K e. dom ( Q \ _I ) ) |
| 35 | 1 2 3 | pmtrdifellem2 | |- ( Q e. T -> dom ( S \ _I ) = dom ( Q \ _I ) ) |
| 36 | 35 | eleq2d | |- ( Q e. T -> ( K e. dom ( S \ _I ) <-> K e. dom ( Q \ _I ) ) ) |
| 37 | 36 | adantr | |- ( ( Q e. T /\ K e. N ) -> ( K e. dom ( S \ _I ) <-> K e. dom ( Q \ _I ) ) ) |
| 38 | 34 37 | mtbird | |- ( ( Q e. T /\ K e. N ) -> -. K e. dom ( S \ _I ) ) |
| 39 | 38 | iffalsed | |- ( ( Q e. T /\ K e. N ) -> if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) = K ) |
| 40 | 8 39 | eqtrd | |- ( ( Q e. T /\ K e. N ) -> ( S ` K ) = K ) |