This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for pmtrdifel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | ||
| Assertion | pmtrdifellem2 | ⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | |
| 4 | 3 | difeq1i | ⊢ ( 𝑆 ∖ I ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) ∖ I ) |
| 5 | 4 | dmeqi | ⊢ dom ( 𝑆 ∖ I ) = dom ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) ∖ I ) |
| 6 | eqid | ⊢ ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 7 | 6 1 | pmtrfb | ⊢ ( 𝑄 ∈ 𝑇 ↔ ( ( 𝑁 ∖ { 𝐾 } ) ∈ V ∧ 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) ) |
| 8 | difsnexi | ⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∈ V → 𝑁 ∈ V ) | |
| 9 | f1of | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) → 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 10 | fdm | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) → dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) ) | |
| 11 | difssd | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → ( 𝑄 ∖ I ) ⊆ 𝑄 ) | |
| 12 | dmss | ⊢ ( ( 𝑄 ∖ I ) ⊆ 𝑄 → dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 ) | |
| 13 | 11 12 | syl | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 ) |
| 14 | difssd | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) | |
| 15 | sseq1 | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → ( dom 𝑄 ⊆ 𝑁 ↔ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) ) | |
| 16 | 14 15 | mpbird | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → dom 𝑄 ⊆ 𝑁 ) |
| 17 | 13 16 | sstrd | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) ⊆ 𝑁 ) |
| 18 | 9 10 17 | 3syl | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) ⊆ 𝑁 ) |
| 19 | id | ⊢ ( dom ( 𝑄 ∖ I ) ≈ 2o → dom ( 𝑄 ∖ I ) ≈ 2o ) | |
| 20 | 8 18 19 | 3anim123i | ⊢ ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ V ∧ 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) → ( 𝑁 ∈ V ∧ dom ( 𝑄 ∖ I ) ⊆ 𝑁 ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) ) |
| 21 | 7 20 | sylbi | ⊢ ( 𝑄 ∈ 𝑇 → ( 𝑁 ∈ V ∧ dom ( 𝑄 ∖ I ) ⊆ 𝑁 ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) ) |
| 22 | eqid | ⊢ ( pmTrsp ‘ 𝑁 ) = ( pmTrsp ‘ 𝑁 ) | |
| 23 | 22 | pmtrmvd | ⊢ ( ( 𝑁 ∈ V ∧ dom ( 𝑄 ∖ I ) ⊆ 𝑁 ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) → dom ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 24 | 21 23 | syl | ⊢ ( 𝑄 ∈ 𝑇 → dom ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 25 | 5 24 | eqtrid | ⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |