This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for pmtrdifel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | ||
| Assertion | pmtrdifellem1 | ⊢ ( 𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | |
| 4 | eqid | ⊢ ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 5 | 4 1 | pmtrfb | ⊢ ( 𝑄 ∈ 𝑇 ↔ ( ( 𝑁 ∖ { 𝐾 } ) ∈ V ∧ 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) ) |
| 6 | difsnexi | ⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∈ V → 𝑁 ∈ V ) | |
| 7 | f1of | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) → 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 8 | fdm | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) → dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) ) | |
| 9 | difssd | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → ( 𝑄 ∖ I ) ⊆ 𝑄 ) | |
| 10 | dmss | ⊢ ( ( 𝑄 ∖ I ) ⊆ 𝑄 → dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 ) | |
| 11 | 9 10 | syl | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 ) |
| 12 | difssd | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) | |
| 13 | sseq1 | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → ( dom 𝑄 ⊆ 𝑁 ↔ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) ) | |
| 14 | 12 13 | mpbird | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → dom 𝑄 ⊆ 𝑁 ) |
| 15 | 11 14 | sstrd | ⊢ ( dom 𝑄 = ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) ⊆ 𝑁 ) |
| 16 | 7 8 15 | 3syl | ⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) ⊆ 𝑁 ) |
| 17 | id | ⊢ ( dom ( 𝑄 ∖ I ) ≈ 2o → dom ( 𝑄 ∖ I ) ≈ 2o ) | |
| 18 | eqid | ⊢ ( pmTrsp ‘ 𝑁 ) = ( pmTrsp ‘ 𝑁 ) | |
| 19 | 18 2 | pmtrrn | ⊢ ( ( 𝑁 ∈ V ∧ dom ( 𝑄 ∖ I ) ⊆ 𝑁 ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) ∈ 𝑅 ) |
| 20 | 3 19 | eqeltrid | ⊢ ( ( 𝑁 ∈ V ∧ dom ( 𝑄 ∖ I ) ⊆ 𝑁 ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) → 𝑆 ∈ 𝑅 ) |
| 21 | 6 16 17 20 | syl3an | ⊢ ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ V ∧ 𝑄 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) → 𝑆 ∈ 𝑅 ) |
| 22 | 5 21 | sylbi | ⊢ ( 𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅 ) |