This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | pmtrdifel | ⊢ ∀ 𝑡 ∈ 𝑇 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | eqid | ⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) | |
| 4 | 1 2 3 | pmtrdifellem1 | ⊢ ( 𝑡 ∈ 𝑇 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ∈ 𝑅 ) |
| 5 | 1 2 3 | pmtrdifellem3 | ⊢ ( 𝑡 ∈ 𝑇 → ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) |
| 6 | fveq1 | ⊢ ( 𝑟 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) → ( 𝑟 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) | |
| 7 | 6 | eqeq2d | ⊢ ( 𝑟 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) → ( ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ↔ ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑟 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) → ( ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) ) |
| 9 | 8 | rspcev | ⊢ ( ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ∈ 𝑅 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ) |
| 10 | 4 5 9 | syl2anc | ⊢ ( 𝑡 ∈ 𝑇 → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ) |
| 11 | 10 | rgen | ⊢ ∀ 𝑡 ∈ 𝑇 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) |