This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply group multiplication to the algebra scalars. (Contributed by Thierry Arnoux, 24-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclmulg.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclmulg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| asclmulg.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| asclmulg.m | ⊢ ↑ = ( .g ‘ 𝑊 ) | ||
| asclmulg.t | ⊢ ∗ = ( .g ‘ 𝐹 ) | ||
| Assertion | asclmulg | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑁 ∗ 𝑋 ) ) = ( 𝑁 ↑ ( 𝐴 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclmulg.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclmulg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | asclmulg.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | asclmulg.m | ⊢ ↑ = ( .g ‘ 𝑊 ) | |
| 5 | asclmulg.t | ⊢ ∗ = ( .g ‘ 𝐹 ) | |
| 6 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 8 | simp3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) | |
| 9 | simp2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → 𝑁 ∈ ℕ0 ) | |
| 10 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 13 | 11 12 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝑊 ∈ AssAlg → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 16 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 17 | 11 2 16 3 4 5 | lmodvsmmulgdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑁 ↑ ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) = ( ( 𝑁 ∗ 𝑋 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 18 | 7 8 9 15 17 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 𝑁 ↑ ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) = ( ( 𝑁 ∗ 𝑋 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 19 | 1 2 3 16 12 | asclval | ⊢ ( 𝑋 ∈ 𝐾 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 20 | 8 19 | syl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 𝑁 ↑ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑁 ↑ ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 22 | 2 | assasca | ⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 23 | 22 | ringgrpd | ⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Grp ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → 𝐹 ∈ Grp ) |
| 25 | 9 | nn0zd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → 𝑁 ∈ ℤ ) |
| 26 | 3 5 24 25 8 | mulgcld | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 𝑁 ∗ 𝑋 ) ∈ 𝐾 ) |
| 27 | 1 2 3 16 12 | asclval | ⊢ ( ( 𝑁 ∗ 𝑋 ) ∈ 𝐾 → ( 𝐴 ‘ ( 𝑁 ∗ 𝑋 ) ) = ( ( 𝑁 ∗ 𝑋 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 28 | 26 27 | syl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑁 ∗ 𝑋 ) ) = ( ( 𝑁 ∗ 𝑋 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 29 | 18 21 28 | 3eqtr4rd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑁 ∗ 𝑋 ) ) = ( 𝑁 ↑ ( 𝐴 ‘ 𝑋 ) ) ) |