This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The oddvds property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odeq | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 = ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 6 | 1 2 3 4 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
| 7 | 5 6 | syl3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ ℕ0 ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
| 10 | breq1 | ⊢ ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ( 𝑁 ∥ 𝑦 ↔ ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ) ) | |
| 11 | 10 | bibi1d | ⊢ ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ( ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ∀ 𝑦 ∈ ℕ0 ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| 13 | 9 12 | syl5ibrcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 = ( 𝑂 ‘ 𝐴 ) → ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| 15 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 ∈ ℕ0 ) | |
| 16 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝐴 ∈ 𝑋 ) | |
| 17 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 18 | 16 17 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 19 | 1 2 3 4 | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 20 | 16 19 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 21 | 17 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 22 | breq2 | ⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( 𝑁 ∥ 𝑦 ↔ 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ) ) | |
| 23 | oveq1 | ⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( 𝑦 · 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) | |
| 24 | 23 | eqeq1d | ⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
| 25 | 22 24 | bibi12d | ⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) ) |
| 26 | 25 | rspcva | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
| 27 | 21 26 | sylan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
| 28 | 20 27 | mpbird | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 29 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 30 | iddvds | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) | |
| 31 | 15 29 30 | 3syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 ∥ 𝑁 ) |
| 32 | breq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝑁 ∥ 𝑦 ↔ 𝑁 ∥ 𝑁 ) ) | |
| 33 | oveq1 | ⊢ ( 𝑦 = 𝑁 → ( 𝑦 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) | |
| 34 | 33 | eqeq1d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 35 | 32 34 | bibi12d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ ( 𝑁 ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
| 36 | 35 | rspcva | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 37 | 36 | 3ad2antl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 38 | 31 37 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑁 · 𝐴 ) = 0 ) |
| 39 | 1 2 3 4 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 40 | 29 39 | syl3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 42 | 38 41 | mpbird | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) |
| 43 | dvdseq | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑁 ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) ) → 𝑁 = ( 𝑂 ‘ 𝐴 ) ) | |
| 44 | 15 18 28 42 43 | syl22anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) → 𝑁 = ( 𝑂 ‘ 𝐴 ) ) |
| 45 | 44 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) → 𝑁 = ( 𝑂 ‘ 𝐴 ) ) ) |
| 46 | 14 45 | impbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 = ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑁 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |