This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite group sum of scaled monomials is a univariate polynomial. (Contributed by AV, 8-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummonply1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| gsummonply1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| gsummonply1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| gsummonply1.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | ||
| gsummonply1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| gsummonply1.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| gsummonply1.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | ||
| gsummonply1.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsummonply1.a | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) | ||
| gsummonply1.f | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) | ||
| Assertion | gsumsmonply1 | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummonply1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | gsummonply1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | gsummonply1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 4 | gsummonply1.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 5 | gsummonply1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | gsummonply1.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 7 | gsummonply1.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | |
| 8 | gsummonply1.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 9 | gsummonply1.a | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) | |
| 10 | gsummonply1.f | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 12 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 13 | ringcmn | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) | |
| 14 | 5 12 13 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 15 | nn0ex | ⊢ ℕ0 ∈ V | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 17 | 9 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝐾 ) |
| 18 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
| 19 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) | |
| 20 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) | |
| 21 | eqid | ⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) | |
| 22 | 6 1 3 7 21 4 2 | ply1tmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 23 | 18 19 20 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 24 | 17 23 | mpd3an3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 25 | 24 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐵 ) |
| 26 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 27 | 5 26 | syl | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 28 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 29 | 5 28 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 30 | 1 3 21 4 2 | ply1moncl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
| 31 | 5 30 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
| 32 | 16 27 29 2 17 31 11 8 7 10 | mptscmfsupp0 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 33 | 2 11 14 16 25 32 | gsumcl | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ 𝐵 ) |