This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr ). (Contributed by BTernaryTau, 10-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | entrfil | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶 ) → 𝐴 ≈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | ⊢ ( 𝐵 ≈ 𝐶 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) | |
| 2 | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | exdistrv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ↔ ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ) | |
| 4 | 19.42vv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝐴 ∈ Fin ∧ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ) ↔ ( 𝐴 ∈ Fin ∧ ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ) ) | |
| 5 | f1oco | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝑓 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐶 ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑓 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐶 ) |
| 7 | f1oenfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑓 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐶 ) → 𝐴 ≈ 𝐶 ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ) → 𝐴 ≈ 𝐶 ) |
| 9 | 8 | exlimivv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝐴 ∈ Fin ∧ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ) → 𝐴 ≈ 𝐶 ) |
| 10 | 4 9 | sylbir | ⊢ ( ( 𝐴 ∈ Fin ∧ ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ) → 𝐴 ≈ 𝐶 ) |
| 11 | 3 10 | sylan2br | ⊢ ( ( 𝐴 ∈ Fin ∧ ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) ) → 𝐴 ≈ 𝐶 ) |
| 12 | 11 | 3impb | ⊢ ( ( 𝐴 ∈ Fin ∧ ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐴 ≈ 𝐶 ) |
| 13 | 2 12 | syl3an2b | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐴 ≈ 𝐶 ) |
| 14 | 1 13 | syl3an3b | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶 ) → 𝐴 ≈ 𝐶 ) |