This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-pow . (Revised by BTernaryTau, 28-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phpeqd.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| phpeqd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| phpeqd.3 | ⊢ ( 𝜑 → 𝐴 ≈ 𝐵 ) | ||
| Assertion | phpeqd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phpeqd.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | phpeqd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 3 | phpeqd.3 | ⊢ ( 𝜑 → 𝐴 ≈ 𝐵 ) | |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) | |
| 6 | 5 | neqcomd | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐵 = 𝐴 ) |
| 7 | dfpss2 | ⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) | |
| 8 | 4 6 7 | sylanbrc | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ⊊ 𝐴 ) |
| 9 | php3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 10 | 1 8 9 | syl2an2r | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ≺ 𝐴 ) |
| 11 | sdomnen | ⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴 ) | |
| 12 | ensymfib | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) | |
| 13 | 12 | notbid | ⊢ ( 𝐴 ∈ Fin → ( ¬ 𝐴 ≈ 𝐵 ↔ ¬ 𝐵 ≈ 𝐴 ) ) |
| 14 | 13 | biimpar | ⊢ ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ≈ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 15 | 1 11 14 | syl2an | ⊢ ( ( 𝜑 ∧ 𝐵 ≺ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 16 | 10 15 | syldan | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 18 | 3 17 | mt4d | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |