This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-pow . (Revised by BTernaryTau, 28-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phpeqd.1 | |- ( ph -> A e. Fin ) |
|
| phpeqd.2 | |- ( ph -> B C_ A ) |
||
| phpeqd.3 | |- ( ph -> A ~~ B ) |
||
| Assertion | phpeqd | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phpeqd.1 | |- ( ph -> A e. Fin ) |
|
| 2 | phpeqd.2 | |- ( ph -> B C_ A ) |
|
| 3 | phpeqd.3 | |- ( ph -> A ~~ B ) |
|
| 4 | 2 | adantr | |- ( ( ph /\ -. A = B ) -> B C_ A ) |
| 5 | simpr | |- ( ( ph /\ -. A = B ) -> -. A = B ) |
|
| 6 | 5 | neqcomd | |- ( ( ph /\ -. A = B ) -> -. B = A ) |
| 7 | dfpss2 | |- ( B C. A <-> ( B C_ A /\ -. B = A ) ) |
|
| 8 | 4 6 7 | sylanbrc | |- ( ( ph /\ -. A = B ) -> B C. A ) |
| 9 | php3 | |- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
|
| 10 | 1 8 9 | syl2an2r | |- ( ( ph /\ -. A = B ) -> B ~< A ) |
| 11 | sdomnen | |- ( B ~< A -> -. B ~~ A ) |
|
| 12 | ensymfib | |- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |
|
| 13 | 12 | notbid | |- ( A e. Fin -> ( -. A ~~ B <-> -. B ~~ A ) ) |
| 14 | 13 | biimpar | |- ( ( A e. Fin /\ -. B ~~ A ) -> -. A ~~ B ) |
| 15 | 1 11 14 | syl2an | |- ( ( ph /\ B ~< A ) -> -. A ~~ B ) |
| 16 | 10 15 | syldan | |- ( ( ph /\ -. A = B ) -> -. A ~~ B ) |
| 17 | 16 | ex | |- ( ph -> ( -. A = B -> -. A ~~ B ) ) |
| 18 | 3 17 | mt4d | |- ( ph -> A = B ) |