This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity subgroup is a P -group for every prime P . (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgp0.1 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | pgp0 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 𝑃 pGrp ( 𝐺 ↾s { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgp0.1 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℕ ) |
| 4 | 3 | nncnd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℂ ) |
| 5 | 4 | exp0d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ 0 ) = 1 ) |
| 6 | 1 | fvexi | ⊢ 0 ∈ V |
| 7 | hashsng | ⊢ ( 0 ∈ V → ( ♯ ‘ { 0 } ) = 1 ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ♯ ‘ { 0 } ) = 1 |
| 9 | 1 | 0subg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 | eqid | ⊢ ( 𝐺 ↾s { 0 } ) = ( 𝐺 ↾s { 0 } ) | |
| 12 | 11 | subgbas | ⊢ ( { 0 } ∈ ( SubGrp ‘ 𝐺 ) → { 0 } = ( Base ‘ ( 𝐺 ↾s { 0 } ) ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → { 0 } = ( Base ‘ ( 𝐺 ↾s { 0 } ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( ♯ ‘ { 0 } ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s { 0 } ) ) ) ) |
| 15 | 8 14 | eqtr3id | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 1 = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s { 0 } ) ) ) ) |
| 16 | 5 15 | eqtr2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s { 0 } ) ) ) = ( 𝑃 ↑ 0 ) ) |
| 17 | 11 | subggrp | ⊢ ( { 0 } ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s { 0 } ) ∈ Grp ) |
| 18 | 10 17 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( 𝐺 ↾s { 0 } ) ∈ Grp ) |
| 19 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℙ ) | |
| 20 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 21 | 20 | a1i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 0 ∈ ℕ0 ) |
| 22 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s { 0 } ) ) = ( Base ‘ ( 𝐺 ↾s { 0 } ) ) | |
| 23 | 22 | pgpfi1 | ⊢ ( ( ( 𝐺 ↾s { 0 } ) ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 0 ∈ ℕ0 ) → ( ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s { 0 } ) ) ) = ( 𝑃 ↑ 0 ) → 𝑃 pGrp ( 𝐺 ↾s { 0 } ) ) ) |
| 24 | 18 19 21 23 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s { 0 } ) ) ) = ( 𝑃 ↑ 0 ) → 𝑃 pGrp ( 𝐺 ↾s { 0 } ) ) ) |
| 25 | 16 24 | mpd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 𝑃 pGrp ( 𝐺 ↾s { 0 } ) ) |