This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994) (Revised to shorten 3anrot by Wolf Lammen, 9-Jun-2022.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3ancomb | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ 𝜒 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 2 | 3anan32 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ 𝜒 ∧ 𝜓 ) ) |