This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | add12d | ⊢ ( 𝜑 → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐵 + ( 𝐴 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | add12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐵 + ( 𝐴 + 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐵 + ( 𝐴 + 𝐶 ) ) ) |