This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcneg | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 2 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 3 | 2 | ad2antrl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ℂ ) |
| 4 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 5 | 4 | ad2antll | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
| 6 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 7 | 6 | ad2antll | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
| 8 | 3 5 7 | divnegd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → - ( 𝑥 / 𝑦 ) = ( - 𝑥 / 𝑦 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) ) |
| 10 | neg0 | ⊢ - 0 = 0 | |
| 11 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) | |
| 12 | 11 | negeqd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → - 𝑥 = - 0 ) |
| 13 | 10 12 11 | 3eqtr4a | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → - 𝑥 = 𝑥 ) |
| 14 | 13 | oveq1d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → ( - 𝑥 / 𝑦 ) = ( 𝑥 / 𝑦 ) ) |
| 15 | 14 | oveq2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
| 16 | simpll | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑃 ∈ ℙ ) | |
| 17 | simplrl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ℤ ) | |
| 18 | 17 | znegcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → - 𝑥 ∈ ℤ ) |
| 19 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) | |
| 20 | 2 | negne0bd | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ≠ 0 ↔ - 𝑥 ≠ 0 ) ) |
| 21 | 17 20 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑥 ≠ 0 ↔ - 𝑥 ≠ 0 ) ) |
| 22 | 19 21 | mpbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → - 𝑥 ≠ 0 ) |
| 23 | simplrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑦 ∈ ℕ ) | |
| 24 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( - 𝑥 ∈ ℤ ∧ - 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) | |
| 25 | 16 18 22 23 24 | syl121anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 26 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) | |
| 27 | 16 17 19 23 26 | syl121anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 28 | eqid | ⊢ sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) | |
| 29 | 28 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( - 𝑥 ∈ ℤ ∧ - 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt - 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
| 30 | 16 18 22 29 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt - 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
| 31 | eqid | ⊢ sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) | |
| 32 | 31 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) ) |
| 33 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 34 | zexpcl | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑦 ) ∈ ℤ ) | |
| 35 | 33 34 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑦 ) ∈ ℤ ) |
| 36 | simpl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ℤ ) | |
| 37 | dvdsnegb | ⊢ ( ( ( 𝑃 ↑ 𝑦 ) ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 ) ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 ) ) |
| 39 | 38 | an32s | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 ) ) |
| 40 | 39 | rabbidva | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } = { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } ) |
| 41 | 40 | supeq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
| 42 | 32 41 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
| 43 | 16 17 19 42 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
| 44 | 30 43 | eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt - 𝑥 ) = ( 𝑃 pCnt 𝑥 ) ) |
| 45 | 44 | oveq1d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 46 | 27 45 | eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 47 | 25 46 | eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
| 48 | 15 47 | pm2.61dane | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
| 49 | 9 48 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
| 50 | negeq | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → - 𝐴 = - ( 𝑥 / 𝑦 ) ) | |
| 51 | 50 | oveq2d | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) ) |
| 52 | oveq2 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) | |
| 53 | 51 52 | eqeq12d | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ↔ ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) ) |
| 54 | 49 53 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
| 55 | 54 | rexlimdvva | ⊢ ( 𝑃 ∈ ℙ → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
| 56 | 1 55 | biimtrid | ⊢ ( 𝑃 ∈ ℙ → ( 𝐴 ∈ ℚ → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
| 57 | 56 | imp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) |