This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of Munkres p. 93. (Contributed by NM, 5-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uncld | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundi | ⊢ ( ∪ 𝐽 ∖ ( 𝐴 ∪ 𝐵 ) ) = ( ( ∪ 𝐽 ∖ 𝐴 ) ∩ ( ∪ 𝐽 ∖ 𝐵 ) ) | |
| 2 | cldrcl | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | cldopn | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐴 ) ∈ 𝐽 ) |
| 5 | 3 | cldopn | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) |
| 6 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝐴 ) ∈ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) → ( ( ∪ 𝐽 ∖ 𝐴 ) ∩ ( ∪ 𝐽 ∖ 𝐵 ) ) ∈ 𝐽 ) | |
| 7 | 2 4 5 6 | syl2an3an | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ∪ 𝐽 ∖ 𝐴 ) ∩ ( ∪ 𝐽 ∖ 𝐵 ) ) ∈ 𝐽 ) |
| 8 | 1 7 | eqeltrid | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ ( 𝐴 ∪ 𝐵 ) ) ∈ 𝐽 ) |
| 9 | 3 | cldss | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 10 | 3 | cldss | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵 ⊆ ∪ 𝐽 ) |
| 11 | 9 10 | anim12i | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽 ) ) |
| 12 | unss | ⊢ ( ( 𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ∪ 𝐽 ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ∪ 𝐽 ) |
| 14 | 3 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ∪ 𝐽 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( 𝐴 ∪ 𝐵 ) ) ∈ 𝐽 ) ) |
| 15 | 2 13 14 | syl2an2r | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐴 ∪ 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( 𝐴 ∪ 𝐵 ) ) ∈ 𝐽 ) ) |
| 16 | 8 15 | mpbird | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |