This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a nullset does not change the measure of a set. (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolunnul | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( vol* ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 𝐴 ⊆ ℝ ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 𝐵 ⊆ ℝ ) | |
| 3 | 1 2 | unssd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
| 4 | ovolcl | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) |
| 6 | ovolcl | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 8 | xrltnle | ⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) | |
| 9 | 7 5 8 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) |
| 10 | 1 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → 𝐴 ⊆ ℝ ) |
| 11 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 12 | 11 | a1i | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → -∞ ∈ ℝ* ) |
| 13 | 10 6 | syl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 14 | 5 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) |
| 15 | ovolge0 | ⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
| 17 | ge0gtmnf | ⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) → -∞ < ( vol* ‘ 𝐴 ) ) | |
| 18 | 7 16 17 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → -∞ < ( vol* ‘ 𝐴 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → -∞ < ( vol* ‘ 𝐴 ) ) |
| 20 | simpr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 21 | xrre2 | ⊢ ( ( ( -∞ ∈ ℝ* ∧ ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) ∧ ( -∞ < ( vol* ‘ 𝐴 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 22 | 12 13 14 19 20 21 | syl32anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 23 | 2 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → 𝐵 ⊆ ℝ ) |
| 24 | simpl3 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐵 ) = 0 ) | |
| 25 | 0re | ⊢ 0 ∈ ℝ | |
| 26 | 24 25 | eqeltrdi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
| 27 | ovolun | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) | |
| 28 | 10 22 23 26 27 | syl22anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
| 29 | 24 | oveq2d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) = ( ( vol* ‘ 𝐴 ) + 0 ) ) |
| 30 | 22 | recnd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
| 31 | 30 | addridd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( vol* ‘ 𝐴 ) + 0 ) = ( vol* ‘ 𝐴 ) ) |
| 32 | 29 31 | eqtrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) = ( vol* ‘ 𝐴 ) ) |
| 33 | 28 32 | breqtrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) |
| 34 | 33 | ex | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) |
| 35 | 9 34 | sylbird | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ¬ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) |
| 36 | 35 | pm2.18d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) |
| 37 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 38 | ovolss | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 39 | 37 3 38 | sylancr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 40 | 5 7 36 39 | xrletrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( vol* ‘ 𝐴 ) ) |