This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a nullset does not change the measure of a set. (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolunnul | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` ( A u. B ) ) = ( vol* ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> A C_ RR ) |
|
| 2 | simp2 | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> B C_ RR ) |
|
| 3 | 1 2 | unssd | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( A u. B ) C_ RR ) |
| 4 | ovolcl | |- ( ( A u. B ) C_ RR -> ( vol* ` ( A u. B ) ) e. RR* ) |
|
| 5 | 3 4 | syl | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` ( A u. B ) ) e. RR* ) |
| 6 | ovolcl | |- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) e. RR* ) |
| 8 | xrltnle | |- ( ( ( vol* ` A ) e. RR* /\ ( vol* ` ( A u. B ) ) e. RR* ) -> ( ( vol* ` A ) < ( vol* ` ( A u. B ) ) <-> -. ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
|
| 9 | 7 5 8 | syl2anc | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( ( vol* ` A ) < ( vol* ` ( A u. B ) ) <-> -. ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
| 10 | 1 | adantr | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> A C_ RR ) |
| 11 | mnfxr | |- -oo e. RR* |
|
| 12 | 11 | a1i | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> -oo e. RR* ) |
| 13 | 10 6 | syl | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) e. RR* ) |
| 14 | 5 | adantr | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` ( A u. B ) ) e. RR* ) |
| 15 | ovolge0 | |- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
|
| 16 | 15 | 3ad2ant1 | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> 0 <_ ( vol* ` A ) ) |
| 17 | ge0gtmnf | |- ( ( ( vol* ` A ) e. RR* /\ 0 <_ ( vol* ` A ) ) -> -oo < ( vol* ` A ) ) |
|
| 18 | 7 16 17 | syl2anc | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> -oo < ( vol* ` A ) ) |
| 19 | 18 | adantr | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> -oo < ( vol* ` A ) ) |
| 20 | simpr | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) |
|
| 21 | xrre2 | |- ( ( ( -oo e. RR* /\ ( vol* ` A ) e. RR* /\ ( vol* ` ( A u. B ) ) e. RR* ) /\ ( -oo < ( vol* ` A ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) ) -> ( vol* ` A ) e. RR ) |
|
| 22 | 12 13 14 19 20 21 | syl32anc | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) e. RR ) |
| 23 | 2 | adantr | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> B C_ RR ) |
| 24 | simpl3 | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` B ) = 0 ) |
|
| 25 | 0re | |- 0 e. RR |
|
| 26 | 24 25 | eqeltrdi | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` B ) e. RR ) |
| 27 | ovolun | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |
|
| 28 | 10 22 23 26 27 | syl22anc | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |
| 29 | 24 | oveq2d | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( ( vol* ` A ) + ( vol* ` B ) ) = ( ( vol* ` A ) + 0 ) ) |
| 30 | 22 | recnd | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` A ) e. CC ) |
| 31 | 30 | addridd | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( ( vol* ` A ) + 0 ) = ( vol* ` A ) ) |
| 32 | 29 31 | eqtrd | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( ( vol* ` A ) + ( vol* ` B ) ) = ( vol* ` A ) ) |
| 33 | 28 32 | breqtrd | |- ( ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) /\ ( vol* ` A ) < ( vol* ` ( A u. B ) ) ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) |
| 34 | 33 | ex | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( ( vol* ` A ) < ( vol* ` ( A u. B ) ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
| 35 | 9 34 | sylbird | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( -. ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) ) |
| 36 | 35 | pm2.18d | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` ( A u. B ) ) <_ ( vol* ` A ) ) |
| 37 | ssun1 | |- A C_ ( A u. B ) |
|
| 38 | ovolss | |- ( ( A C_ ( A u. B ) /\ ( A u. B ) C_ RR ) -> ( vol* ` A ) <_ ( vol* ` ( A u. B ) ) ) |
|
| 39 | 37 3 38 | sylancr | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` A ) <_ ( vol* ` ( A u. B ) ) ) |
| 40 | 5 7 36 39 | xrletrid | |- ( ( A C_ RR /\ B C_ RR /\ ( vol* ` B ) = 0 ) -> ( vol* ` ( A u. B ) ) = ( vol* ` A ) ) |