This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrre2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrre1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) | |
| 2 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 3 | sstr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
| 5 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 6 | nltpnft | ⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 8 | 7 | necon2abid | ⊢ ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 10 | 1 9 | bitrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |