This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolicopnf | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ ( 𝐴 [,) +∞ ) ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | icossre | ⊢ ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝐴 [,) +∞ ) ⊆ ℝ ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ⊆ ℝ ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝐴 [,) +∞ ) ⊆ ℝ ) |
| 5 | ovolge0 | ⊢ ( ( 𝐴 [,) +∞ ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
| 7 | mnflt0 | ⊢ -∞ < 0 | |
| 8 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 9 | 0xr | ⊢ 0 ∈ ℝ* | |
| 10 | ovolcl | ⊢ ( ( 𝐴 [,) +∞ ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) | |
| 11 | 3 10 | syl | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) |
| 13 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) ) | |
| 14 | 8 9 12 13 | mp3an12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) ) |
| 15 | 7 14 | mpani | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) ) |
| 16 | 6 15 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
| 17 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) | |
| 18 | xrrebnd | ⊢ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) ) | |
| 19 | 12 18 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) ) |
| 20 | 16 17 19 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ ) |
| 21 | 20 | ltp1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) < ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
| 22 | peano2re | ⊢ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ∈ ℝ ) | |
| 23 | 20 22 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ∈ ℝ ) |
| 24 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 𝐴 ∈ ℝ ) | |
| 25 | 23 24 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ∈ ℝ ) |
| 26 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 0 ∈ ℝ ) | |
| 27 | 20 | lep1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ≤ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
| 28 | 26 20 23 6 27 | letrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 0 ≤ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
| 29 | 24 23 | addge02d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 0 ≤ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ↔ 𝐴 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) |
| 30 | 28 29 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 𝐴 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) |
| 31 | ovolicc | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ∈ ℝ ∧ 𝐴 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) = ( ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) − 𝐴 ) ) | |
| 32 | 24 25 30 31 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) = ( ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) − 𝐴 ) ) |
| 33 | 23 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ∈ ℂ ) |
| 34 | 24 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 𝐴 ∈ ℂ ) |
| 35 | 33 34 | pncand | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) − 𝐴 ) = ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
| 36 | 32 35 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) = ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
| 37 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ) | |
| 38 | 24 25 37 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ) |
| 39 | 38 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) |
| 40 | 39 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → 𝑥 ∈ ℝ ) |
| 41 | 39 | simp2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → 𝐴 ≤ 𝑥 ) |
| 42 | elicopnf | ⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) ) | |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) ) |
| 44 | 40 41 43 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → 𝑥 ∈ ( 𝐴 [,) +∞ ) ) |
| 45 | 44 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) → 𝑥 ∈ ( 𝐴 [,) +∞ ) ) ) |
| 46 | 45 | ssrdv | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ⊆ ( 𝐴 [,) +∞ ) ) |
| 47 | ovolss | ⊢ ( ( ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ⊆ ( 𝐴 [,) +∞ ) ∧ ( 𝐴 [,) +∞ ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) | |
| 48 | 46 4 47 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
| 49 | 36 48 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
| 50 | 23 20 49 | lensymd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
| 51 | 21 50 | pm2.65da | ⊢ ( 𝐴 ∈ ℝ → ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) |
| 52 | nltpnft | ⊢ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) | |
| 53 | 11 52 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) |
| 54 | 51 53 | mpbird | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ ( 𝐴 [,) +∞ ) ) = +∞ ) |