This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolicopnf | |- ( A e. RR -> ( vol* ` ( A [,) +oo ) ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | |- +oo e. RR* |
|
| 2 | icossre | |- ( ( A e. RR /\ +oo e. RR* ) -> ( A [,) +oo ) C_ RR ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR -> ( A [,) +oo ) C_ RR ) |
| 4 | 3 | adantr | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( A [,) +oo ) C_ RR ) |
| 5 | ovolge0 | |- ( ( A [,) +oo ) C_ RR -> 0 <_ ( vol* ` ( A [,) +oo ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> 0 <_ ( vol* ` ( A [,) +oo ) ) ) |
| 7 | mnflt0 | |- -oo < 0 |
|
| 8 | mnfxr | |- -oo e. RR* |
|
| 9 | 0xr | |- 0 e. RR* |
|
| 10 | ovolcl | |- ( ( A [,) +oo ) C_ RR -> ( vol* ` ( A [,) +oo ) ) e. RR* ) |
|
| 11 | 3 10 | syl | |- ( A e. RR -> ( vol* ` ( A [,) +oo ) ) e. RR* ) |
| 12 | 11 | adantr | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,) +oo ) ) e. RR* ) |
| 13 | xrltletr | |- ( ( -oo e. RR* /\ 0 e. RR* /\ ( vol* ` ( A [,) +oo ) ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( vol* ` ( A [,) +oo ) ) ) -> -oo < ( vol* ` ( A [,) +oo ) ) ) ) |
|
| 14 | 8 9 12 13 | mp3an12i | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( ( -oo < 0 /\ 0 <_ ( vol* ` ( A [,) +oo ) ) ) -> -oo < ( vol* ` ( A [,) +oo ) ) ) ) |
| 15 | 7 14 | mpani | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( 0 <_ ( vol* ` ( A [,) +oo ) ) -> -oo < ( vol* ` ( A [,) +oo ) ) ) ) |
| 16 | 6 15 | mpd | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> -oo < ( vol* ` ( A [,) +oo ) ) ) |
| 17 | simpr | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,) +oo ) ) < +oo ) |
|
| 18 | xrrebnd | |- ( ( vol* ` ( A [,) +oo ) ) e. RR* -> ( ( vol* ` ( A [,) +oo ) ) e. RR <-> ( -oo < ( vol* ` ( A [,) +oo ) ) /\ ( vol* ` ( A [,) +oo ) ) < +oo ) ) ) |
|
| 19 | 12 18 | syl | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( ( vol* ` ( A [,) +oo ) ) e. RR <-> ( -oo < ( vol* ` ( A [,) +oo ) ) /\ ( vol* ` ( A [,) +oo ) ) < +oo ) ) ) |
| 20 | 16 17 19 | mpbir2and | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,) +oo ) ) e. RR ) |
| 21 | 20 | ltp1d | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,) +oo ) ) < ( ( vol* ` ( A [,) +oo ) ) + 1 ) ) |
| 22 | peano2re | |- ( ( vol* ` ( A [,) +oo ) ) e. RR -> ( ( vol* ` ( A [,) +oo ) ) + 1 ) e. RR ) |
|
| 23 | 20 22 | syl | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( ( vol* ` ( A [,) +oo ) ) + 1 ) e. RR ) |
| 24 | simpl | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> A e. RR ) |
|
| 25 | 23 24 | readdcld | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) e. RR ) |
| 26 | 0red | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> 0 e. RR ) |
|
| 27 | 20 | lep1d | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,) +oo ) ) <_ ( ( vol* ` ( A [,) +oo ) ) + 1 ) ) |
| 28 | 26 20 23 6 27 | letrd | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> 0 <_ ( ( vol* ` ( A [,) +oo ) ) + 1 ) ) |
| 29 | 24 23 | addge02d | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( 0 <_ ( ( vol* ` ( A [,) +oo ) ) + 1 ) <-> A <_ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) |
| 30 | 28 29 | mpbid | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> A <_ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) |
| 31 | ovolicc | |- ( ( A e. RR /\ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) e. RR /\ A <_ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) -> ( vol* ` ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) = ( ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) - A ) ) |
|
| 32 | 24 25 30 31 | syl3anc | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) = ( ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) - A ) ) |
| 33 | 23 | recnd | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( ( vol* ` ( A [,) +oo ) ) + 1 ) e. CC ) |
| 34 | 24 | recnd | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> A e. CC ) |
| 35 | 33 34 | pncand | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) - A ) = ( ( vol* ` ( A [,) +oo ) ) + 1 ) ) |
| 36 | 32 35 | eqtrd | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) = ( ( vol* ` ( A [,) +oo ) ) + 1 ) ) |
| 37 | elicc2 | |- ( ( A e. RR /\ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) e. RR ) -> ( x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) <-> ( x e. RR /\ A <_ x /\ x <_ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) ) |
|
| 38 | 24 25 37 | syl2anc | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) <-> ( x e. RR /\ A <_ x /\ x <_ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) ) |
| 39 | 38 | biimpa | |- ( ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) /\ x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) -> ( x e. RR /\ A <_ x /\ x <_ ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) |
| 40 | 39 | simp1d | |- ( ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) /\ x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) -> x e. RR ) |
| 41 | 39 | simp2d | |- ( ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) /\ x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) -> A <_ x ) |
| 42 | elicopnf | |- ( A e. RR -> ( x e. ( A [,) +oo ) <-> ( x e. RR /\ A <_ x ) ) ) |
|
| 43 | 42 | ad2antrr | |- ( ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) /\ x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) -> ( x e. ( A [,) +oo ) <-> ( x e. RR /\ A <_ x ) ) ) |
| 44 | 40 41 43 | mpbir2and | |- ( ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) /\ x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) -> x e. ( A [,) +oo ) ) |
| 45 | 44 | ex | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( x e. ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) -> x e. ( A [,) +oo ) ) ) |
| 46 | 45 | ssrdv | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) C_ ( A [,) +oo ) ) |
| 47 | ovolss | |- ( ( ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) C_ ( A [,) +oo ) /\ ( A [,) +oo ) C_ RR ) -> ( vol* ` ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) <_ ( vol* ` ( A [,) +oo ) ) ) |
|
| 48 | 46 4 47 | syl2anc | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( vol* ` ( A [,] ( ( ( vol* ` ( A [,) +oo ) ) + 1 ) + A ) ) ) <_ ( vol* ` ( A [,) +oo ) ) ) |
| 49 | 36 48 | eqbrtrrd | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> ( ( vol* ` ( A [,) +oo ) ) + 1 ) <_ ( vol* ` ( A [,) +oo ) ) ) |
| 50 | 23 20 49 | lensymd | |- ( ( A e. RR /\ ( vol* ` ( A [,) +oo ) ) < +oo ) -> -. ( vol* ` ( A [,) +oo ) ) < ( ( vol* ` ( A [,) +oo ) ) + 1 ) ) |
| 51 | 21 50 | pm2.65da | |- ( A e. RR -> -. ( vol* ` ( A [,) +oo ) ) < +oo ) |
| 52 | nltpnft | |- ( ( vol* ` ( A [,) +oo ) ) e. RR* -> ( ( vol* ` ( A [,) +oo ) ) = +oo <-> -. ( vol* ` ( A [,) +oo ) ) < +oo ) ) |
|
| 53 | 11 52 | syl | |- ( A e. RR -> ( ( vol* ` ( A [,) +oo ) ) = +oo <-> -. ( vol* ` ( A [,) +oo ) ) < +oo ) ) |
| 54 | 51 53 | mpbird | |- ( A e. RR -> ( vol* ` ( A [,) +oo ) ) = +oo ) |