This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolre | ⊢ ( vol* ‘ ℝ ) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ℝ ⊆ ℝ | |
| 2 | ovolcl | ⊢ ( ℝ ⊆ ℝ → ( vol* ‘ ℝ ) ∈ ℝ* ) | |
| 3 | 1 2 | ax-mp | ⊢ ( vol* ‘ ℝ ) ∈ ℝ* |
| 4 | pnfge | ⊢ ( ( vol* ‘ ℝ ) ∈ ℝ* → ( vol* ‘ ℝ ) ≤ +∞ ) | |
| 5 | 3 4 | ax-mp | ⊢ ( vol* ‘ ℝ ) ≤ +∞ |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | ovolicopnf | ⊢ ( 0 ∈ ℝ → ( vol* ‘ ( 0 [,) +∞ ) ) = +∞ ) | |
| 8 | 6 7 | ax-mp | ⊢ ( vol* ‘ ( 0 [,) +∞ ) ) = +∞ |
| 9 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 10 | ovolss | ⊢ ( ( ( 0 [,) +∞ ) ⊆ ℝ ∧ ℝ ⊆ ℝ ) → ( vol* ‘ ( 0 [,) +∞ ) ) ≤ ( vol* ‘ ℝ ) ) | |
| 11 | 9 1 10 | mp2an | ⊢ ( vol* ‘ ( 0 [,) +∞ ) ) ≤ ( vol* ‘ ℝ ) |
| 12 | 8 11 | eqbrtrri | ⊢ +∞ ≤ ( vol* ‘ ℝ ) |
| 13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 14 | xrletri3 | ⊢ ( ( ( vol* ‘ ℝ ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol* ‘ ℝ ) = +∞ ↔ ( ( vol* ‘ ℝ ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ℝ ) ) ) ) | |
| 15 | 3 13 14 | mp2an | ⊢ ( ( vol* ‘ ℝ ) = +∞ ↔ ( ( vol* ‘ ℝ ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ℝ ) ) ) |
| 16 | 5 12 15 | mpbir2an | ⊢ ( vol* ‘ ℝ ) = +∞ |