This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolctb2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( vol* ‘ 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ ℕ ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → 𝐴 ⊆ ℝ ) | |
| 3 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 4 | unss | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ℕ ⊆ ℝ ) ↔ ( 𝐴 ∪ ℕ ) ⊆ ℝ ) | |
| 5 | 2 3 4 | sylanblc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ⊆ ℝ ) |
| 6 | nnenom | ⊢ ℕ ≈ ω | |
| 7 | domentr | ⊢ ( ( 𝐴 ≼ ℕ ∧ ℕ ≈ ω ) → 𝐴 ≼ ω ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐴 ≼ ℕ → 𝐴 ≼ ω ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → 𝐴 ≼ ω ) |
| 10 | nnct | ⊢ ℕ ≼ ω | |
| 11 | unctb | ⊢ ( ( 𝐴 ≼ ω ∧ ℕ ≼ ω ) → ( 𝐴 ∪ ℕ ) ≼ ω ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ≼ ω ) |
| 13 | 6 | ensymi | ⊢ ω ≈ ℕ |
| 14 | domentr | ⊢ ( ( ( 𝐴 ∪ ℕ ) ≼ ω ∧ ω ≈ ℕ ) → ( 𝐴 ∪ ℕ ) ≼ ℕ ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ≼ ℕ ) |
| 16 | reex | ⊢ ℝ ∈ V | |
| 17 | 16 | ssex | ⊢ ( ( 𝐴 ∪ ℕ ) ⊆ ℝ → ( 𝐴 ∪ ℕ ) ∈ V ) |
| 18 | 5 17 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ∈ V ) |
| 19 | ssun2 | ⊢ ℕ ⊆ ( 𝐴 ∪ ℕ ) | |
| 20 | ssdomg | ⊢ ( ( 𝐴 ∪ ℕ ) ∈ V → ( ℕ ⊆ ( 𝐴 ∪ ℕ ) → ℕ ≼ ( 𝐴 ∪ ℕ ) ) ) | |
| 21 | 18 19 20 | mpisyl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ℕ ≼ ( 𝐴 ∪ ℕ ) ) |
| 22 | sbth | ⊢ ( ( ( 𝐴 ∪ ℕ ) ≼ ℕ ∧ ℕ ≼ ( 𝐴 ∪ ℕ ) ) → ( 𝐴 ∪ ℕ ) ≈ ℕ ) | |
| 23 | 15 21 22 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ≈ ℕ ) |
| 24 | ovolctb | ⊢ ( ( ( 𝐴 ∪ ℕ ) ⊆ ℝ ∧ ( 𝐴 ∪ ℕ ) ≈ ℕ ) → ( vol* ‘ ( 𝐴 ∪ ℕ ) ) = 0 ) | |
| 25 | 5 23 24 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( vol* ‘ ( 𝐴 ∪ ℕ ) ) = 0 ) |
| 26 | ovolssnul | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ ℕ ) ∧ ( 𝐴 ∪ ℕ ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∪ ℕ ) ) = 0 ) → ( vol* ‘ 𝐴 ) = 0 ) | |
| 27 | 1 5 25 26 | mp3an2i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( vol* ‘ 𝐴 ) = 0 ) |