This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolctb2 | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( vol* ` A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | |- A C_ ( A u. NN ) |
|
| 2 | simpl | |- ( ( A C_ RR /\ A ~<_ NN ) -> A C_ RR ) |
|
| 3 | nnssre | |- NN C_ RR |
|
| 4 | unss | |- ( ( A C_ RR /\ NN C_ RR ) <-> ( A u. NN ) C_ RR ) |
|
| 5 | 2 3 4 | sylanblc | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) C_ RR ) |
| 6 | nnenom | |- NN ~~ _om |
|
| 7 | domentr | |- ( ( A ~<_ NN /\ NN ~~ _om ) -> A ~<_ _om ) |
|
| 8 | 6 7 | mpan2 | |- ( A ~<_ NN -> A ~<_ _om ) |
| 9 | 8 | adantl | |- ( ( A C_ RR /\ A ~<_ NN ) -> A ~<_ _om ) |
| 10 | nnct | |- NN ~<_ _om |
|
| 11 | unctb | |- ( ( A ~<_ _om /\ NN ~<_ _om ) -> ( A u. NN ) ~<_ _om ) |
|
| 12 | 9 10 11 | sylancl | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~<_ _om ) |
| 13 | 6 | ensymi | |- _om ~~ NN |
| 14 | domentr | |- ( ( ( A u. NN ) ~<_ _om /\ _om ~~ NN ) -> ( A u. NN ) ~<_ NN ) |
|
| 15 | 12 13 14 | sylancl | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~<_ NN ) |
| 16 | reex | |- RR e. _V |
|
| 17 | 16 | ssex | |- ( ( A u. NN ) C_ RR -> ( A u. NN ) e. _V ) |
| 18 | 5 17 | syl | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) e. _V ) |
| 19 | ssun2 | |- NN C_ ( A u. NN ) |
|
| 20 | ssdomg | |- ( ( A u. NN ) e. _V -> ( NN C_ ( A u. NN ) -> NN ~<_ ( A u. NN ) ) ) |
|
| 21 | 18 19 20 | mpisyl | |- ( ( A C_ RR /\ A ~<_ NN ) -> NN ~<_ ( A u. NN ) ) |
| 22 | sbth | |- ( ( ( A u. NN ) ~<_ NN /\ NN ~<_ ( A u. NN ) ) -> ( A u. NN ) ~~ NN ) |
|
| 23 | 15 21 22 | syl2anc | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( A u. NN ) ~~ NN ) |
| 24 | ovolctb | |- ( ( ( A u. NN ) C_ RR /\ ( A u. NN ) ~~ NN ) -> ( vol* ` ( A u. NN ) ) = 0 ) |
|
| 25 | 5 23 24 | syl2anc | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( vol* ` ( A u. NN ) ) = 0 ) |
| 26 | ovolssnul | |- ( ( A C_ ( A u. NN ) /\ ( A u. NN ) C_ RR /\ ( vol* ` ( A u. NN ) ) = 0 ) -> ( vol* ` A ) = 0 ) |
|
| 27 | 1 5 25 26 | mp3an2i | |- ( ( A C_ RR /\ A ~<_ NN ) -> ( vol* ` A ) = 0 ) |